Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 4, Pages 829–837 (Mi smj2128)  

This article is cited in 11 scientific papers (total in 11 papers)

Determination of Riesz bounds for the spline basis with the help of trigonometric polynomials

E. V. Mishchenkoab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: The problem of determining the upper and lower Riesz bounds for the mth order BB-spline basis is reduced to analyzing the series j=1(xj)2mj=1(xj)2m. The sum of the series is shown to be a ratio of trigonometric polynomials of a particular shape. Some properties of these polynomials that help to determine the Riesz bounds are established. The results are applied in the theory of series to find the sums of some power series.
Keywords: BB-spline, Riesz basis, upper and lower Riesz bounds, trigonometric polynomial, power series.
Received: 21.01.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 4, Pages 660–666
DOI: https://doi.org/10.1007/s11202-010-0067-7
Bibliographic databases:
Document Type: Article
UDC: 517.518.34+517.537.3
Language: Russian
Citation: E. V. Mishchenko, “Determination of Riesz bounds for the spline basis with the help of trigonometric polynomials”, Sibirsk. Mat. Zh., 51:4 (2010), 829–837; Siberian Math. J., 51:4 (2010), 660–666
Citation in format AMSBIB
\Bibitem{Mis10}
\by E.~V.~Mishchenko
\paper Determination of Riesz bounds for the spline basis with the help of trigonometric polynomials
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 4
\pages 829--837
\mathnet{http://mi.mathnet.ru/smj2128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2732301}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 4
\pages 660--666
\crossref{https://doi.org/10.1007/s11202-010-0067-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281763300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956275874}
Linking options:
  • https://www.mathnet.ru/eng/smj2128
  • https://www.mathnet.ru/eng/smj/v51/i4/p829
  • This publication is cited in the following 11 articles:
    1. Kumari Priyanka, A. Antony Selvan, “Derivative Sampling Expansions in Shift-Invariant Spaces With Error Estimates Covering Discontinuous Signals”, IEEE Trans. Inform. Theory, 70:8 (2024), 5453  crossref
    2. E. V. Mishchenko, “Stability condition and Riesz bounds for exponential splines”, Sib. elektron. matem. izv., 20:2 (2023), 1430–1442  mathnet  crossref
    3. A. Antony Selvan, Kumari Priyanka, “Perturbation Theorems for Regular Sampling in Wavelet Subspaces”, Acta Appl Math, 182:1 (2022)  crossref
    4. Yu. S. Volkov, “Efficient computation of Favard constants and their connection to Euler polynomials and numbers”, Sib. elektron. matem. izv., 17 (2020), 1921–1942  mathnet  crossref
    5. Kumar A., Sampath S., “Average Sampling and Reconstruction in Shift-Invariant Spaces and Variable Bandwidth Spaces”, Appl. Anal., 99:4 (2020), 672–699  crossref  mathscinet  zmath  isi  scopus
    6. De Carli L., Vellucci P., “P-Riesz Bases in Quasi Shift Invariant Spaces”, Frames and Harmonic Analysis, Contemporary Mathematics, 706, eds. Kim Y., Narayan S., Picioroaga G., Weber E., Amer Mathematical Soc, 2018, 201–213  crossref  mathscinet  zmath  isi  scopus
    7. De Carli L., Vellucci P., “Stability Results For Gabor Frames and the P-Order Hold Models”, Linear Alg. Appl., 536 (2018), 186–200  crossref  mathscinet  zmath  isi  scopus
    8. Selvan A.A., Radha R., “Sampling and Reconstruction in Shift Invariant Spaces of -Spline Functions”, Acta Appl. Math., 145:1 (2016), 175–192  crossref  mathscinet  zmath  isi  scopus
    9. V. G. Alekseev, V. A. Sukhodoev, “Schoenberg’s polynomial B-splines of odd degrees: A brief review of application”, Comput. Math. Math. Phys., 52:10 (2012), 1331–1341  mathnet  crossref  mathscinet  zmath
    10. Alekseev V.G., Sukhodoev V.A., “Polinomialnye b-splainy shenberga i ikh primenenie k postroeniyu ortogonalnykh veivlet-sistem”, Elektromagnitnye volny i elektronnye sistemy, 17:4 (2012), 17–20  mathscinet  elib
    11. V. G. Alekseev, V. A. Sukhodoev, “Schoenberg's polynomial B-splines of odd degrees: A brief review of application”, Comput. Math. and Math. Phys., 52:10 (2012), 1331  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:445
    Full-text PDF :106
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025