Abstract:
We obtain necessary and sufficient conditions for the solvability of difference equations in a Banach space of vector sequences with an initial condition in a subspace.
Keywords:
difference equation, weighted shift operator, linear relation, restriction of a relation, ordered pair, spectrum of a pair.
Citation:
M. S. Bichegkuev, “Solvability conditions for the difference equations with an initial condition in a subspace”, Sibirsk. Mat. Zh., 51:4 (2010), 751–768; Siberian Math. J., 51:4 (2010), 595–609
\Bibitem{Bic10}
\by M.~S.~Bichegkuev
\paper Solvability conditions for the difference equations with an initial condition in a~subspace
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 4
\pages 751--768
\mathnet{http://mi.mathnet.ru/smj2122}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2732295}
\elib{https://elibrary.ru/item.asp?id=15517871}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 4
\pages 595--609
\crossref{https://doi.org/10.1007/s11202-010-0061-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281763300003}
\elib{https://elibrary.ru/item.asp?id=15335066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956274135}
Linking options:
https://www.mathnet.ru/eng/smj2122
https://www.mathnet.ru/eng/smj/v51/i4/p751
This publication is cited in the following 6 articles:
N. B. Uskova, G. V. Garkavenko, “The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential”, J. Math. Sci., 246:6 (2020), 812–827
M. S. Bichegkuev, “Lyapunov Transformation of Differential Operators with Unbounded Operator Coefficients”, Math. Notes, 99:1 (2016), 24–36
Bichegkuev M.S., “Spectral Analysis of Differential Operators With Unbounded Operator Coefficients on the Half-Line”, Differ. Equ., 51:4 (2015), 431–439
M. S. Bichegkuev, “Spectral Analysis of Differential Operators with Unbounded Operator Coefficients in Weighted Spaces of Functions”, Math. Notes, 95:1 (2014), 15–21
V. B. Didenko, “On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects”, Izv. Math., 77:1 (2013), 3–19
A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116