Abstract:
We study the asymptotics of the distribution function and compute the regularized trace of a boundary value problem for the operator-differential equation with the boundary value depending on a spectral parameter.
Citation:
N. M. Aslanova, “About the spectrum and the trace formula for the operator Bessel equation”, Sibirsk. Mat. Zh., 51:4 (2010), 721–737; Siberian Math. J., 51:4 (2010), 569–583
\Bibitem{Asl10}
\by N.~M.~Aslanova
\paper About the spectrum and the trace formula for the operator Bessel equation
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 4
\pages 721--737
\mathnet{http://mi.mathnet.ru/smj2120}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2732292}
\elib{https://elibrary.ru/item.asp?id=15517869}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 4
\pages 569--583
\crossref{https://doi.org/10.1007/s11202-010-0059-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281763300001}
\elib{https://elibrary.ru/item.asp?id=15408667}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956276192}
Linking options:
https://www.mathnet.ru/eng/smj2120
https://www.mathnet.ru/eng/smj/v51/i4/p721
This publication is cited in the following 4 articles:
Aslanova N.M., Bayramoglu M., Aslanov Kh.M., “Some Spectral Properties of Fourth Order Differential Operator Equation”, Oper. Matrices, 12:1 (2018), 287–299
Aslanova N.M. Bayramoglu M. Aslanov Kh.M., “On One Class Eigenvalue Problem With Eigenvalue Parameter in the Boundary Condition At One End-Point”, Filomat, 32:19 (2018), 6667–6674
Aslanova N.M., Bayramoglu M., Aslanov Kh.M., “Eigenvalue Problem Associated With the Fourth Order Differential-Operator Equation”, Rocky Mt. J. Math., 48:6 (2018), 1763–1779
Adigüzelov E., Sezer Y., “The regularized trace of a self adjoint differential operator of higher order with unbounded operator coefficient”, Appl. Math. Comput., 218:5 (2011), 2113–2121