Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 3, Pages 700–714 (Mi smj2119)  

This article is cited in 1 scientific paper (total in 1 paper)

The weak Bieberbach theorem for crystallographic groups on pseudo-Euclidean spaces

V. A. Churkinab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Mechanics and Mathematics Department, Novosibirsk
Full-text PDF (345 kB) Citations (1)
References:
Abstract: The weak Bieberbach theorem states that each crystallographic group on a Euclidean space uniquely determines its translation lattice as an abstract group. Garipov proved in 2003 that the same holds for crystallographic groups on Minkowski spaces and asked whether a similar claim holds in the pseudo-Euclidean spaces $\mathbb R^{p,q}$. We prove that the weak Bieberbach theorem holds for crystallographic groups on pseudo-Euclidean spaces $\mathbb R^{p,q}$ with $\min\{p,q\}\le2$. For $\min\{p,q\}\ge3$ we construct examples of crystallographic groups with two distinct lattices exchanged by a suitable automorphism of the group. For crystallographic groups with two distinct isomorphic pseudo-Euclidean lattices we also prove that the coranks of their intersection in these lattices can take arbitrary values greater than 2 with the exception of 4.
Keywords: pseudo-Euclidean space, crystallographic group, weak Bieberbach theorem, translation lattice.
Received: 28.01.2010
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 3, Pages 557–568
DOI: https://doi.org/10.1007/s11202-010-0058-8
Bibliographic databases:
Document Type: Article
UDC: 512.865.3
Language: Russian
Citation: V. A. Churkin, “The weak Bieberbach theorem for crystallographic groups on pseudo-Euclidean spaces”, Sibirsk. Mat. Zh., 51:3 (2010), 700–714; Siberian Math. J., 51:3 (2010), 557–568
Citation in format AMSBIB
\Bibitem{Chu10}
\by V.~A.~Churkin
\paper The weak Bieberbach theorem for crystallographic groups on pseudo-Euclidean spaces
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 3
\pages 700--714
\mathnet{http://mi.mathnet.ru/smj2119}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2722682}
\zmath{https://zbmath.org/?q=an:1202.20050}
\elib{https://elibrary.ru/item.asp?id=15505479}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 3
\pages 557--568
\crossref{https://doi.org/10.1007/s11202-010-0058-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279087500020}
\elib{https://elibrary.ru/item.asp?id=15332580}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954026129}
Linking options:
  • https://www.mathnet.ru/eng/smj2119
  • https://www.mathnet.ru/eng/smj/v51/i3/p700
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025