Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 3, Pages 626–637 (Mi smj2113)  

This article is cited in 2 scientific papers (total in 2 papers)

The Lie algebra of skew-symmetric elements and its application in the theory of Jordan algebras

S. R. Sverchkov

Novosibirsk State University, Novosibirsk
Full-text PDF (330 kB) Citations (2)
References:
Abstract: We prove that the Lie algebra of skew-symmetric elements of the free associative algebra of rank 2 with respect to the standard involution is generated as a module by the elements $[a,b]$ and $[a,b]^3$, where $a$ and $b$ are Jordan polynomials. Using this result we prove that the Lie algebra of Jordan derivations of the free Jordan algebra of rank 2 is generated as a characteristic $F$-module by two derivations. We show that the Jordan commutator $s$-identities follow from the Glennie–Shestakov $s$-identity.
Keywords: skew-symmetric element, standard involution, Lie algebra, free associative algebra, Jordan derivation, Jordan $s$-identity.
Received: 02.07.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 3, Pages 496–506
DOI: https://doi.org/10.1007/s11202-010-0052-1
Bibliographic databases:
Document Type: Article
UDC: 519.48
Language: Russian
Citation: S. R. Sverchkov, “The Lie algebra of skew-symmetric elements and its application in the theory of Jordan algebras”, Sibirsk. Mat. Zh., 51:3 (2010), 626–637; Siberian Math. J., 51:3 (2010), 496–506
Citation in format AMSBIB
\Bibitem{Sve10}
\by S.~R.~Sverchkov
\paper The Lie algebra of skew-symmetric elements and its application in the theory of Jordan algebras
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 3
\pages 626--637
\mathnet{http://mi.mathnet.ru/smj2113}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2683104}
\zmath{https://zbmath.org/?q=an:1214.17003}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 3
\pages 496--506
\crossref{https://doi.org/10.1007/s11202-010-0052-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279087500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954025069}
Linking options:
  • https://www.mathnet.ru/eng/smj2113
  • https://www.mathnet.ru/eng/smj/v51/i3/p626
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025