Abstract:
We prove that the Lie algebra of skew-symmetric elements of the free associative algebra of rank 2 with respect to the standard involution is generated as a module by the elements [a,b][a,b] and [a,b]3, where a and b are Jordan polynomials. Using this result we prove that the Lie algebra of Jordan derivations of the free Jordan algebra of rank 2 is generated as a characteristic F-module by two derivations. We show that the Jordan commutator s-identities follow from the Glennie–Shestakov s-identity.
Keywords:
skew-symmetric element, standard involution, Lie algebra, free associative algebra, Jordan derivation, Jordan s-identity.
Citation:
S. R. Sverchkov, “The Lie algebra of skew-symmetric elements and its application in the theory of Jordan algebras”, Sibirsk. Mat. Zh., 51:3 (2010), 626–637; Siberian Math. J., 51:3 (2010), 496–506
\Bibitem{Sve10}
\by S.~R.~Sverchkov
\paper The Lie algebra of skew-symmetric elements and its application in the theory of Jordan algebras
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 3
\pages 626--637
\mathnet{http://mi.mathnet.ru/smj2113}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2683104}
\zmath{https://zbmath.org/?q=an:1214.17003}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 3
\pages 496--506
\crossref{https://doi.org/10.1007/s11202-010-0052-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279087500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954025069}
Linking options:
https://www.mathnet.ru/eng/smj2113
https://www.mathnet.ru/eng/smj/v51/i3/p626
This publication is cited in the following 2 articles:
Kashuba I. Mathieu O., “On the Free Jordan Algebras”, Adv. Math., 383 (2021), 107690
S. R. Sverchkov, “Jordan s-identities in three variables”, Algebra and Logic, 50:1 (2011), 62–88