Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 3, Pages 569–574 (Mi smj2107)  

The limit spectrum of a positive operator in $L_2$ that is integral on some subspace

V. B. Korotkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Given a positive linear operator $S\colon L_2\to L_2$ integral on some dense subspace in $L_2$, we prove that 0 belongs to the limit spectrum of $S$.
Keywords: limit spectrum, positive operator, integral operator.
Received: 03.03.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 3, Pages 452–455
DOI: https://doi.org/10.1007/s11202-010-0046-z
Bibliographic databases:
Document Type: Article
UDC: 517.983
Language: Russian
Citation: V. B. Korotkov, “The limit spectrum of a positive operator in $L_2$ that is integral on some subspace”, Sibirsk. Mat. Zh., 51:3 (2010), 569–574; Siberian Math. J., 51:3 (2010), 452–455
Citation in format AMSBIB
\Bibitem{Kor10}
\by V.~B.~Korotkov
\paper The limit spectrum of a~positive operator in $L_2$ that is integral on some subspace
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 3
\pages 569--574
\mathnet{http://mi.mathnet.ru/smj2107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2683098}
\zmath{https://zbmath.org/?q=an:1200.47043}
\elib{https://elibrary.ru/item.asp?id=15505467}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 3
\pages 452--455
\crossref{https://doi.org/10.1007/s11202-010-0046-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279087500008}
\elib{https://elibrary.ru/item.asp?id=15328743}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953979506}
Linking options:
  • https://www.mathnet.ru/eng/smj2107
  • https://www.mathnet.ru/eng/smj/v51/i3/p569
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :86
    References:50
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024