Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 3, Pages 481–497 (Mi smj2100)  

This article is cited in 18 scientific papers (total in 18 papers)

Preservation of stability under discretization of systems of ordinary differential equations

A. Yu. Aleksandrov, A. P. Zhabko

Saint-Petersburg State University, Saint-Petersburg
References:
Abstract: We study the stability preservation problem while passing from ordinary differential to difference equations. Using the method of Lyapunov functions, we determine the conditions under which the asymptotic stability of the zero solutions to systems of differential equations implies that the zero solutions to the corresponding difference systems are asymptotically stable as well. We prove a theorem on the stability of perturbed systems, estimate the duration of transition processes for some class of systems of nonlinear difference equations, and study the conditions of the stability of complex systems in nonlinear approximation.
Keywords: difference system, Lyapunov function, asymptotic stability, complex system, stability in nonlinear approximation.
Received: 20.02.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 3, Pages 383–395
DOI: https://doi.org/10.1007/s11202-010-0039-y
Bibliographic databases:
Document Type: Article
UDC: 517.962.2
Language: Russian
Citation: A. Yu. Aleksandrov, A. P. Zhabko, “Preservation of stability under discretization of systems of ordinary differential equations”, Sibirsk. Mat. Zh., 51:3 (2010), 481–497; Siberian Math. J., 51:3 (2010), 383–395
Citation in format AMSBIB
\Bibitem{AleZha10}
\by A.~Yu.~Aleksandrov, A.~P.~Zhabko
\paper Preservation of stability under discretization of systems of ordinary differential equations
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 3
\pages 481--497
\mathnet{http://mi.mathnet.ru/smj2100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2683091}
\zmath{https://zbmath.org/?q=an:1208.65115}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 3
\pages 383--395
\crossref{https://doi.org/10.1007/s11202-010-0039-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279087500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953980536}
Linking options:
  • https://www.mathnet.ru/eng/smj2100
  • https://www.mathnet.ru/eng/smj/v51/i3/p481
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:588
    Full-text PDF :170
    References:93
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024