Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 2, Pages 428–441 (Mi smj2096)  

This article is cited in 1 scientific paper (total in 1 paper)

The Cauchy problem for a semi-infinite Volterra chain with an asymptotically periodic initial condition

A. Kh. Khanmamedov

Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan
Full-text PDF (340 kB) Citations (1)
References:
Abstract: We examine the Cauchy problem for a semi-infinite Volterra chain with an asymptotically periodic initial condition. The question is addressed of existence of a solution with the same asymptotics at infinity as the initial condition. We demonstrate that the method of the inverse scattering problem is applicable to this problem.
Keywords: Volterra chain, scattering problem, asymptotically periodic condition, inverse problem method, Cauchy problem, global solvability.
Received: 14.12.2007
Revised: 19.11.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 2, Pages 346–356
DOI: https://doi.org/10.1007/s11202-010-0036-1
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: A. Kh. Khanmamedov, “The Cauchy problem for a semi-infinite Volterra chain with an asymptotically periodic initial condition”, Sibirsk. Mat. Zh., 51:2 (2010), 428–441; Siberian Math. J., 51:2 (2010), 346–356
Citation in format AMSBIB
\Bibitem{Kha10}
\by A.~Kh.~Khanmamedov
\paper The Cauchy problem for a~semi-infinite Volterra chain with an asymptotically periodic initial condition
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 2
\pages 428--441
\mathnet{http://mi.mathnet.ru/smj2096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668110}
\elib{https://elibrary.ru/item.asp?id=15505456}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 2
\pages 346--356
\crossref{https://doi.org/10.1007/s11202-010-0036-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276746000017}
\elib{https://elibrary.ru/item.asp?id=15360021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952083429}
Linking options:
  • https://www.mathnet.ru/eng/smj2096
  • https://www.mathnet.ru/eng/smj/v51/i2/p428
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024