Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 2, Pages 357–366 (Mi smj2089)  

On computable automorphisms in formal concept analysis

A. S. Morozov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Under study are the automorphism groups of computable formal contexts. We give a general method to transform results on the automorphisms of computable structures into results on the automorphisms of formal contexts. Using this method, we prove that the computable formal contexts and computable structures actually have the same automorphism groups and groups of computable automorphisms. We construct some examples of formal contexts and concept lattices that have nontrivial automorphisms but none of them could be hyperarithmetical in any hyperarithmetical presentation of these structures. We also show that it could be happen that two formal concepts are automorphic but they are not hyperarithmetically automorphic in any hyperarithmetical presentation.
Keywords: formal concept analysis, computable formal context, automorphism.
Received: 23.01.2008
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 2, Pages 289–295
DOI: https://doi.org/10.1007/s11202-010-0029-0
Bibliographic databases:
Document Type: Article
UDC: 510.6+512.56+510.53
Language: Russian
Citation: A. S. Morozov, “On computable automorphisms in formal concept analysis”, Sibirsk. Mat. Zh., 51:2 (2010), 357–366; Siberian Math. J., 51:2 (2010), 289–295
Citation in format AMSBIB
\Bibitem{Mor10}
\by A.~S.~Morozov
\paper On computable automorphisms in formal concept analysis
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 2
\pages 357--366
\mathnet{http://mi.mathnet.ru/smj2089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668103}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 2
\pages 289--295
\crossref{https://doi.org/10.1007/s11202-010-0029-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276746000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952050480}
Linking options:
  • https://www.mathnet.ru/eng/smj2089
  • https://www.mathnet.ru/eng/smj/v51/i2/p357
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024