|
Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 2, Pages 303–315
(Mi smj2084)
|
|
|
|
This article is cited in 10 scientific papers (total in 10 papers)
Recognition of simple groups $B_p(3)$ by the set of element orders
M. R. Zinov'evaa, R. Shenb, W. Shib a Ural State Technical University, Ekaterinburg
b Department of mathematics, Suzhou University, China
Abstract:
Let $G$ be a finite group and let $\omega(G)$ be the set of its element orders. We prove that if $\omega(G)=\omega(B_p(3))$ where $p$ is an odd prime, then $G\cong B_3(3)$ or $D_4(3)$ for $p=3$ and $G\cong B_p(3)$ for $p>3$.
Keywords:
finite group, prime graph, recognition by spectrum.
Received: 25.01.2008 Revised: 19.11.2009
Citation:
M. R. Zinov'eva, R. Shen, W. Shi, “Recognition of simple groups $B_p(3)$ by the set of element orders”, Sibirsk. Mat. Zh., 51:2 (2010), 303–315; Siberian Math. J., 51:2 (2010), 244–254
Linking options:
https://www.mathnet.ru/eng/smj2084 https://www.mathnet.ru/eng/smj/v51/i2/p303
|
|