Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 1, Pages 217–235 (Mi smj2079)  

This article is cited in 11 scientific papers (total in 11 papers)

$\Sigma$-Bounded algebraic systems and universal functions. I

A. N. Khisamiev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We introduce the concept of a $\Sigma$-bounded algebraic system and prove that if a system is $\Sigma$- bounded with respect to a subset $A$ then in a hereditarily finite admissible set over this system there exists a universal $\Sigma$-function for the family of functions definable by $\Sigma$-formulas with parameters in $A$. We obtain a necessary and sufficient condition for the existence of a universal $\Sigma$-function in a hereditarily finite admissible set over a $\Sigma$-bounded algebraic system. We prove that every linear order is a $\Sigma$-bounded system and in a hereditarily finite admissible set over it there exists a universal $\Sigma$-function.
Keywords: admissible set, $\Sigma$-definability, computability, universal $\Sigma$-function, linear order.
Received: 28.10.2008
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 1, Pages 178–192
DOI: https://doi.org/10.1007/s11202-010-0019-2
Bibliographic databases:
UDC: 512.540+510.5
Language: Russian
Citation: A. N. Khisamiev, “$\Sigma$-Bounded algebraic systems and universal functions. I”, Sibirsk. Mat. Zh., 51:1 (2010), 217–235; Siberian Math. J., 51:1 (2010), 178–192
Citation in format AMSBIB
\Bibitem{Khi10}
\by A.~N.~Khisamiev
\paper $\Sigma$-Bounded algebraic systems and universal functions.~I
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 1
\pages 217--235
\mathnet{http://mi.mathnet.ru/smj2079}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2654534}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 1
\pages 178--192
\crossref{https://doi.org/10.1007/s11202-010-0019-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274657900019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952818974}
Linking options:
  • https://www.mathnet.ru/eng/smj2079
  • https://www.mathnet.ru/eng/smj/v51/i1/p217
    Cycle of papers
    This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025