Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 1, Pages 204–211 (Mi smj2077)  

This article is cited in 2 scientific papers (total in 2 papers)

The uniqueness of a solution to the renewal type system of integral equations on the line

M. S. Sgibnev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (302 kB) Citations (2)
References:
Abstract: We study the uniqueness of a solution to a renewal type system of integral equations $\text{\mathversion{bold}$z$}=\text{\mathversion{bold}$g$}+\text{\mathversion{bold}$F$}*\text{\mathversion{bold}$z$}$ on the line $\mathbb R$; here {\mathversion{bold}$z$} is the unknown vector function, {\mathversion{bold}$g$} is a known vector function, and {\mathversion{bold}$F$} is a nonlattice matrix of finite measures on $\mathbb R$ such that the matrix $\text{\mathversion{bold}$F$}(\mathbb R)$ is of spectral radius 1 and indecomposable. We show that in a certain class of functions each solution to the corresponding homogeneous system coincides almost everywhere with a right eigenvector of $\text{\mathversion{bold}$F$}(\mathbb R)$ with eigenvalue 1.
Keywords: system of integral equations, renewal equation, uniqueness.
Received: 22.10.2008
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 1, Pages 168–173
DOI: https://doi.org/10.1007/s11202-010-0017-4
Bibliographic databases:
UDC: 517.968.28+517.982.43
Language: Russian
Citation: M. S. Sgibnev, “The uniqueness of a solution to the renewal type system of integral equations on the line”, Sibirsk. Mat. Zh., 51:1 (2010), 204–211; Siberian Math. J., 51:1 (2010), 168–173
Citation in format AMSBIB
\Bibitem{Sgi10}
\by M.~S.~Sgibnev
\paper The uniqueness of a~solution to the renewal type system of integral equations on the line
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 1
\pages 204--211
\mathnet{http://mi.mathnet.ru/smj2077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2654532}
\elib{https://elibrary.ru/item.asp?id=15503518}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 1
\pages 168--173
\crossref{https://doi.org/10.1007/s11202-010-0017-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274657900017}
\elib{https://elibrary.ru/item.asp?id=15332325}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952851833}
Linking options:
  • https://www.mathnet.ru/eng/smj2077
  • https://www.mathnet.ru/eng/smj/v51/i1/p204
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025