Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 1, Pages 156–174 (Mi smj2074)  

This article is cited in 5 scientific papers (total in 5 papers)

Derivation of the equations of nonisothermal acoustics in elastic porous media

A. M. Meirmanov

Belgorod State University, Belgorod
Full-text PDF (369 kB) Citations (5)
References:
Abstract: We consider the problem of the joint motion of a thermoelastic solid skeleton and a viscous thermofluid in pores, when the physical process lasts for a few dozens of seconds. These problems arise in describing the propagation of acoustic waves. We rigorously derive the homogenized equations (i.e., the equations not containing fast oscillatory coefficients) which are different types of nonclassical acoustic equations depending on relations between the physical parameters and the homogenized heat equation. The proofs are based on Nguetseng's two-scale convergence method.
Keywords: nonisothermal Stokes and Lamé's equations, equations of acoustics, two-scale convergence, homogenization of periodic structures.
Received: 21.10.2007
Revised: 05.05.2009
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 1, Pages 128–143
DOI: https://doi.org/10.1007/s11202-010-0014-7
Bibliographic databases:
UDC: 517.958:531.72+517.958:539.3(4)
Language: Russian
Citation: A. M. Meirmanov, “Derivation of the equations of nonisothermal acoustics in elastic porous media”, Sibirsk. Mat. Zh., 51:1 (2010), 156–174; Siberian Math. J., 51:1 (2010), 128–143
Citation in format AMSBIB
\Bibitem{Mei10}
\by A.~M.~Meirmanov
\paper Derivation of the equations of nonisothermal acoustics in elastic porous media
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 1
\pages 156--174
\mathnet{http://mi.mathnet.ru/smj2074}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2654529}
\elib{https://elibrary.ru/item.asp?id=15503515}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 1
\pages 128--143
\crossref{https://doi.org/10.1007/s11202-010-0014-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274657900014}
\elib{https://elibrary.ru/item.asp?id=15326600}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952805829}
Linking options:
  • https://www.mathnet.ru/eng/smj2074
  • https://www.mathnet.ru/eng/smj/v51/i1/p156
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:488
    Full-text PDF :137
    References:86
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024