Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 1, Pages 62–67 (Mi smj2066)  

Estimates for the real taylor coefficients in one function class

E. G. Kir'yatskiĭ

Vilnius Gediminas Technical University, Vilnius, Lithuania
References:
Abstract: Considering the class $\widetilde K^R_n(E)$ of analytic functions $F(z)=z^n+a_{2,n}z^{n+1}+a_{3,n}z^{n+2}+\cdots$ in the unit disk with $a_{m,n}\in\mathbb R$ and the nonvanishing $n$th divided difference $[F(z);z_0,\dots,z_n]$ for all $z_0,\dots,z_n\in E$ we establish that $|a_{k,n+2}|\le(k\gamma_{k,n}-1)/(\gamma_{k,n}+k-2)$, where $\gamma_{k,n}=\max|a_{k,n}|$. If $n$ is an odd number then $\gamma_{k,n}=(n+k-1)/(n+1)$.
Keywords: analytic function, univalent function, divided difference.
Received: 13.08.2008
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 1, Pages 48–52
DOI: https://doi.org/10.1007/s11202-010-0006-7
Bibliographic databases:
UDC: 517.546
Language: Russian
Citation: E. G. Kir'yatskiǐ, “Estimates for the real taylor coefficients in one function class”, Sibirsk. Mat. Zh., 51:1 (2010), 62–67; Siberian Math. J., 51:1 (2010), 48–52
Citation in format AMSBIB
\Bibitem{Kir10}
\by E.~G.~Kir'yatski{\v\i}
\paper Estimates for the real taylor coefficients in one function class
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 1
\pages 62--67
\mathnet{http://mi.mathnet.ru/smj2066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2654521}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 1
\pages 48--52
\crossref{https://doi.org/10.1007/s11202-010-0006-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274657900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952873607}
Linking options:
  • https://www.mathnet.ru/eng/smj2066
  • https://www.mathnet.ru/eng/smj/v51/i1/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :86
    References:79
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024