|
Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 1, Pages 62–67
(Mi smj2066)
|
|
|
|
Estimates for the real taylor coefficients in one function class
E. G. Kir'yatskiĭ Vilnius Gediminas Technical University, Vilnius, Lithuania
Abstract:
Considering the class $\widetilde K^R_n(E)$ of analytic functions $F(z)=z^n+a_{2,n}z^{n+1}+a_{3,n}z^{n+2}+\cdots$ in the unit disk with $a_{m,n}\in\mathbb R$ and the nonvanishing $n$th divided difference $[F(z);z_0,\dots,z_n]$ for all $z_0,\dots,z_n\in E$ we establish that $|a_{k,n+2}|\le(k\gamma_{k,n}-1)/(\gamma_{k,n}+k-2)$, where $\gamma_{k,n}=\max|a_{k,n}|$. If $n$ is an odd number then $\gamma_{k,n}=(n+k-1)/(n+1)$.
Keywords:
analytic function, univalent function, divided difference.
Received: 13.08.2008
Citation:
E. G. Kir'yatskiǐ, “Estimates for the real taylor coefficients in one function class”, Sibirsk. Mat. Zh., 51:1 (2010), 62–67; Siberian Math. J., 51:1 (2010), 48–52
Linking options:
https://www.mathnet.ru/eng/smj2066 https://www.mathnet.ru/eng/smj/v51/i1/p62
|
Statistics & downloads: |
Abstract page: | 345 | Full-text PDF : | 86 | References: | 79 | First page: | 3 |
|