Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2010, Volume 51, Number 1, Pages 48–61 (Mi smj2065)  

This article is cited in 1 scientific paper (total in 1 paper)

Geometric orbifolds with torsion free derived subgroup

R. A. Hydalgoa, A. D. Mednykhb

a Departamento de Matemáticas, Universidad Técnica Federico Santa Maria, Valparaiso, Chile
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (378 kB) Citations (1)
References:
Abstract: A geometric orbifold of dimension $d$ is the quotient space $\mathscr O=X/K$, where $(X,G)$ is a geometry of dimension $d$ and $K<G$ is a co-compact discrete subgroup. In this case $\pi^\mathrm{orb}_1(\mathscr O)=K$ is called the orbifold fundamental group of $\mathscr O$. In general, the derived subgroup $K'$ of $K$ may have elements acting with fixed points; i.e., it may happen that the homology cover $M_\mathscr O=X/K'$ of $\mathscr O$ is not a geometric manifold: it may have geometric singular points. We are concerned with the problem of deciding when $K'$ acts freely on $X$; i.e., when the homology cover $M_\mathscr O$ is a geometric manifold. In the case $d=2$ a complete answer is due to C. Maclachlan. In this paper we provide necessary and sufficient conditions for the derived subgroup $\mathscr O$ to act freely in the case $d=3$ under the assumption that the underlying topological space of the orbifold $K'$ is the 3-sphere $S^3$.
Keywords: manifold, orbifold, geometry, isometry.
Received: 05.06.2008
English version:
Siberian Mathematical Journal, 2010, Volume 51, Issue 1, Pages 38–47
DOI: https://doi.org/10.1007/s11202-010-0005-8
Bibliographic databases:
UDC: 514.13
Language: Russian
Citation: R. A. Hydalgo, A. D. Mednykh, “Geometric orbifolds with torsion free derived subgroup”, Sibirsk. Mat. Zh., 51:1 (2010), 48–61; Siberian Math. J., 51:1 (2010), 38–47
Citation in format AMSBIB
\Bibitem{HidMed10}
\by R.~A.~Hydalgo, A.~D.~Mednykh
\paper Geometric orbifolds with torsion free derived subgroup
\jour Sibirsk. Mat. Zh.
\yr 2010
\vol 51
\issue 1
\pages 48--61
\mathnet{http://mi.mathnet.ru/smj2065}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2654520}
\transl
\jour Siberian Math. J.
\yr 2010
\vol 51
\issue 1
\pages 38--47
\crossref{https://doi.org/10.1007/s11202-010-0005-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000274657900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952801500}
Linking options:
  • https://www.mathnet.ru/eng/smj2065
  • https://www.mathnet.ru/eng/smj/v51/i1/p48
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:377
    Full-text PDF :113
    References:63
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024