Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 6, Pages 1269–1279 (Mi smj2047)  

This article is cited in 2 scientific papers (total in 2 papers)

Weighted composition operators on growth spaces

E. S. Dubtsov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg
Full-text PDF (344 kB) Citations (2)
References:
Abstract: Denote by $\mathcal Hol(B_n)$ the space of all holomorphic functions in the unit ball $B_n$ of $\mathbb C^n$, $n\ge1$. Given $g\in\mathcal Hol(B_m)$ and a holomorphic mapping $\varphi\colon B_m\to B_n$, put $C^g_\varphi f=g\cdot(f\circ\varphi)$ for $f\in\mathcal Hol(B_n)$. We characterize those $g$ and $\varphi$ for which $C^g_\varphi$ is a bounded (or compact) operator from the growth space $\mathscr A^{-\log}(B_n)$ or $\mathscr A^{-\beta}(B_n)$, $\beta>0$, to the weighted Bergman space $A^p_\alpha(B_m)$, $0<p<\infty$, $\alpha>-1$. We obtain some generalizations of these results and study related integral operators.
Keywords: Bergman space, growth space, composition operator, holomorphic Sobolev space.
Received: 13.08.2008
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 6, Pages 998–1006
DOI: https://doi.org/10.1007/s11202-009-0110-8
Bibliographic databases:
UDC: 517.547+517.55+517.98
Language: Russian
Citation: E. S. Dubtsov, “Weighted composition operators on growth spaces”, Sibirsk. Mat. Zh., 50:6 (2009), 1269–1279; Siberian Math. J., 50:6 (2009), 998–1006
Citation in format AMSBIB
\Bibitem{Dub09}
\by E.~S.~Dubtsov
\paper Weighted composition operators on growth spaces
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 6
\pages 1269--1279
\mathnet{http://mi.mathnet.ru/smj2047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603868}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 6
\pages 998--1006
\crossref{https://doi.org/10.1007/s11202-009-0110-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273176200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74549187011}
Linking options:
  • https://www.mathnet.ru/eng/smj2047
  • https://www.mathnet.ru/eng/smj/v50/i6/p1269
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :78
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024