Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 5, Pages 1148–1162 (Mi smj2037)  

The differential properties of one class of surfaces in Euclidean space

Yu. G. Reshetnyak

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We consider $n$-dimensional smooth surfaces of class $\mathscr C^1$ in the Euclidean space of dimension $n+m$ satisfying the following condition. Given two distinct points of the surface, the surface normals at these points either are disjoint or meet at the distance from both of these points bounded below by some fixed positive constant. We establish that every surface of this type carries in a neighborhood of each point a parametrization with bounded second order generalized derivatives in the sense of Sobolev. The proof is based on using geometric properties of the surfaces of this form and on the proposition that establishes sufficient conditions for the existence of bounded second order generalized derivatives of an arbitrary real function. In the Appendix we prove an analog of this lemma in the case of derivatives of arbitrary order.
Keywords: fitting surface, function of a Sobolev class, convex function, generalized derivative in the sense of Sobolev, generalized function, differentiability almost everywhere, generalized Rademacher theorem.
Received: 22.04.2009
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 5, Pages 907–918
DOI: https://doi.org/10.1007/s11202-009-0101-9
Bibliographic databases:
UDC: 514.7+517.982
Language: Russian
Citation: Yu. G. Reshetnyak, “The differential properties of one class of surfaces in Euclidean space”, Sibirsk. Mat. Zh., 50:5 (2009), 1148–1162; Siberian Math. J., 50:5 (2009), 907–918
Citation in format AMSBIB
\Bibitem{Res09}
\by Yu.~G.~Reshetnyak
\paper The differential properties of one class of surfaces in Euclidean space
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 5
\pages 1148--1162
\mathnet{http://mi.mathnet.ru/smj2037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603858}
\elib{https://elibrary.ru/item.asp?id=15304640}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 5
\pages 907--918
\crossref{https://doi.org/10.1007/s11202-009-0101-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273176100015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350383751}
Linking options:
  • https://www.mathnet.ru/eng/smj2037
  • https://www.mathnet.ru/eng/smj/v50/i5/p1148
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :145
    References:77
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024