Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 5, Pages 1137–1147 (Mi smj2036)  

This article is cited in 2 scientific papers (total in 2 papers)

On the logarithmic potential defined for a Van Koch curve

S. P. Ponomarev

Pomeranian Academy in Słupsk, Institute of Mathematics, Słupsk, Poland
Full-text PDF (336 kB) Citations (2)
References:
Abstract: This is a continuation of [1]. Under study are the differentiability properties of the logarithmic potential determined for some class of complex measures distributed on Van Koch's curves. Unlike the classical case of regular curves, the potential is shown to be of class $C^1$ on the whole plane $\mathbb C$. We also study a related analog of Robin's problem. The proofs are based on some results of [1].
Keywords: Van Koch's curve, logarithmic potential, Cauchy-type integral, Robin's problem.
Received: 12.08.2008
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 5, Pages 898–906
DOI: https://doi.org/10.1007/s11202-009-0100-x
Bibliographic databases:
UDC: 517.518.1+517.518.17
Language: Russian
Citation: S. P. Ponomarev, “On the logarithmic potential defined for a Van Koch curve”, Sibirsk. Mat. Zh., 50:5 (2009), 1137–1147; Siberian Math. J., 50:5 (2009), 898–906
Citation in format AMSBIB
\Bibitem{Pon09}
\by S.~P.~Ponomarev
\paper On the logarithmic potential defined for a~Van~Koch curve
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 5
\pages 1137--1147
\mathnet{http://mi.mathnet.ru/smj2036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603857}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 5
\pages 898--906
\crossref{https://doi.org/10.1007/s11202-009-0100-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273176100014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350353509}
Linking options:
  • https://www.mathnet.ru/eng/smj2036
  • https://www.mathnet.ru/eng/smj/v50/i5/p1137
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :84
    References:53
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024