Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 4, Pages 928–932 (Mi smj2015)  

This article is cited in 5 scientific papers (total in 5 papers)

Slowly changing vectors and the asymptotic finite-dimensionality of an operator semigroup

K. V. Storozhuk

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (285 kB) Citations (5)
References:
Abstract: Let X be a Banach space and let T:XX be a linear power bounded operator. Put X0={xXTnx0}. We prove that if X0X then there exists λSp(T) such that, for every ε>0, there is x such that Txλx<ε but Tnx>1ε for all n. The technique we develop enables us to establish that if X is reflexive and there exists a compactum KX such that lim for every norm-one x\in X then \operatorname{codim}X_0<\infty. The results hold also for a one-parameter semigroup.
Keywords: operator semigroup, asymptotic finite-dimensionality.
Received: 02.04.2008
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 4, Pages 737–740
DOI: https://doi.org/10.1007/s11202-009-0084-6
Bibliographic databases:
UDC: 517.954+517.984.5
Language: Russian
Citation: K. V. Storozhuk, “Slowly changing vectors and the asymptotic finite-dimensionality of an operator semigroup”, Sibirsk. Mat. Zh., 50:4 (2009), 928–932; Siberian Math. J., 50:4 (2009), 737–740
Citation in format AMSBIB
\Bibitem{Sto09}
\by K.~V.~Storozhuk
\paper Slowly changing vectors and the asymptotic finite-dimensionality of an operator semigroup
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 4
\pages 928--932
\mathnet{http://mi.mathnet.ru/smj2015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583631}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 4
\pages 737--740
\crossref{https://doi.org/10.1007/s11202-009-0084-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268837600022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350022256}
Linking options:
  • https://www.mathnet.ru/eng/smj2015
  • https://www.mathnet.ru/eng/smj/v50/i4/p928
  • This publication is cited in the following 5 articles:
    1. A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242  mathnet  crossref  crossref  isi  elib
    2. K. V. Storozhuk, “Isometries with Dense Windings of the Torus in C(M)”, Funct. Anal. Appl., 46:3 (2012), 232–233  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. K. V. Storozhuk, “A condition for asymptotic finite-dimensionality of an operator semigroup”, Siberian Math. J., 52:6 (2011), 1104–1107  mathnet  crossref  mathscinet  isi
    4. Emelyanov Eduard Yu., “Asimptoticheski konechnomernye operatory v banakhovykh prostranstvakh. nedavnie prodvizheniya i otkrytye problemy”, Matematicheskii forum (Itogi nauki. Yug Rossii), 5 (2011), 57–62  mathscinet  elib
    5. M. M. Goncharovskii, I. V. Shirokov, “Classification of degenerate solutions of linear differential equations”, Russ Phys J, 54:5 (2011), 527  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:602
    Full-text PDF :105
    References:95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025