Abstract:
Let X be a Banach space and let T:X→X be a linear power bounded operator. Put X0={x∈X∣Tnx→0}. We prove that if X0≠X then there exists λ∈Sp(T) such that, for every ε>0, there is x such that ‖Tx−λx‖<ε but ‖Tnx‖>1−ε for all n. The technique we develop enables us to establish that if X is reflexive and there exists a compactum K⊂X such that lim for every norm-one x\in X then \operatorname{codim}X_0<\infty. The results hold also for a one-parameter semigroup.
Citation:
K. V. Storozhuk, “Slowly changing vectors and the asymptotic finite-dimensionality of an operator semigroup”, Sibirsk. Mat. Zh., 50:4 (2009), 928–932; Siberian Math. J., 50:4 (2009), 737–740
\Bibitem{Sto09}
\by K.~V.~Storozhuk
\paper Slowly changing vectors and the asymptotic finite-dimensionality of an operator semigroup
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 4
\pages 928--932
\mathnet{http://mi.mathnet.ru/smj2015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583631}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 4
\pages 737--740
\crossref{https://doi.org/10.1007/s11202-009-0084-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268837600022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350022256}
Linking options:
https://www.mathnet.ru/eng/smj2015
https://www.mathnet.ru/eng/smj/v50/i4/p928
This publication is cited in the following 5 articles:
A. G. Baskakov, I. I. Strukova, I. A. Trishina, “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 59:2 (2018), 231–242
K. V. Storozhuk, “Isometries with Dense Windings of the Torus in C(M)”, Funct. Anal. Appl., 46:3 (2012), 232–233
K. V. Storozhuk, “A condition for asymptotic finite-dimensionality of an operator semigroup”, Siberian Math. J., 52:6 (2011), 1104–1107
Emelyanov Eduard Yu., “Asimptoticheski konechnomernye operatory v banakhovykh prostranstvakh. nedavnie prodvizheniya i otkrytye problemy”, Matematicheskii forum (Itogi nauki. Yug Rossii), 5 (2011), 57–62
M. M. Goncharovskii, I. V. Shirokov, “Classification of degenerate solutions of linear differential equations”, Russ Phys J, 54:5 (2011), 527