Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 4, Pages 883–889 (Mi smj2011)  

This article is cited in 14 scientific papers (total in 14 papers)

On smoothness of a fundamental solution to a second order hyperbolic equation

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We consider the problem of constructing a fundamental solution to a second order hyperbolic linear equation with variable coefficients depending on the space variable xRn. Under the assumption of high but finite smoothness of the coefficients, we write out the structure of a fundamental solution, establish smoothness of the coefficients of the expansion of its singular part, and characterize smoothness of the regular part.
Keywords: fundamental solution, second order hyperbolic equation, smoothness of solutions.
Received: 11.01.2009
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 4, Pages 700–705
DOI: https://doi.org/10.1007/s11202-009-0080-x
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: V. G. Romanov, “On smoothness of a fundamental solution to a second order hyperbolic equation”, Sibirsk. Mat. Zh., 50:4 (2009), 883–889; Siberian Math. J., 50:4 (2009), 700–705
Citation in format AMSBIB
\Bibitem{Rom09}
\by V.~G.~Romanov
\paper On smoothness of a~fundamental solution to a~second order hyperbolic equation
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 4
\pages 883--889
\mathnet{http://mi.mathnet.ru/smj2011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583627}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 4
\pages 700--705
\crossref{https://doi.org/10.1007/s11202-009-0080-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268837600018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349943732}
Linking options:
  • https://www.mathnet.ru/eng/smj2011
  • https://www.mathnet.ru/eng/smj/v50/i4/p883
  • This publication is cited in the following 14 articles:
    1. M. Yu. Kokurin, “Edinstvennost resheniya uravneniya M.M. Lavrenteva s istochnikami na okruzhnosti”, Izv. vuzov. Matem., 2025, no. 2, 53–60  mathnet  crossref
    2. M. M. Kokurin, V. V. Klyuchev, A. V. Gavrilova, “Uniqueness of a Solution to the Lavrent'ev Integral Equation in n-Dimensional Space”, Comput. Math. and Math. Phys., 64:3 (2024), 416  crossref
    3. S. Z. Dzhamalov, Sh. Sh. Khudoykulov, “On Linear Two-Point Inverse Problem for a Multidimensional Wave Equation with Semi-Nonlocal Boundary Conditions”, Lobachevskii J Math, 45:3 (2024), 1059  crossref
    4. Ahcene Ghandriche, Mourad Sini, “Simultaneous Reconstruction of Optical and Acoustical Properties in Photoacoustic Imaging Using Plasmonics”, SIAM J. Appl. Math., 83:4 (2023), 1738  crossref
    5. M. Yu. Kokurin, “Completeness of asymmetric products of harmonic functions and uniqueness of the solution to the Lavrent'ev equation in inverse wave sounding problems”, Izv. Math., 86:6 (2022), 1123–1142  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. M. Yu. Kokurin, V. V. Klyuchev, “Usloviya edinstvennosti i chislennaya approksimatsiya resheniya integralnogo uravneniya M.M. Lavrenteva”, Sib. zhurn. vychisl. matem., 25:4 (2022), 441–458  mathnet  crossref
    7. M. Yu. Kokurin, V. V. Klyuchev, “Uniqueness Conditions and Numerical Approximation of the Solution to M. M. Lavrentiev's Integral Equation”, Numer. Analys. Appl., 15:4 (2022), 364  crossref
    8. Kokurin M.Yu., “Completeness of the Asymmetric Products of Solutions of a Second-Order Elliptic Equation and the Uniqueness of the Solution of An Inverse Problem For the Wave Equation”, Differ. Equ., 57:2 (2021), 241–250  crossref  mathscinet  zmath  isi  scopus
    9. A. I. Kozlov, M. Yu. Kokurin, “On Lavrent'ev-type integral equations in coefficient inverse problems for wave equations”, Comput. Math. Math. Phys., 61:9 (2021), 1470–1484  mathnet  mathnet  crossref  crossref  isi  scopus
    10. Rakesh, Sacks P., “Uniqueness for a hyperbolic inverse problem with angular control on the coefficients”, J. Inverse Ill-Posed Probl., 19:1 (2011), 107–126  crossref  mathscinet  zmath  isi  scopus
    11. Beilina L., Klibanov M.V., “Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D”, J. Inverse Ill-Posed Probl., 18:1 (2010), 85–132  crossref  mathscinet  zmath  isi  scopus
    12. Klibanov M.V., Fiddy M.A., Beilina L., Pantong N., Schenk J., “Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem”, Inverse Problems, 26:4 (2010), 045003, 30 pp.  crossref  mathscinet  adsnasa  isi  scopus
    13. Beilina L., Klibanov M.V., “Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm”, Inverse Problems, 26:12 (2010), 125009, 30 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Beilina L., Klibanov M.V., “Global convergence for Inverse Problems”, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1281, 2010, 1056–1058  crossref  mathscinet  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:565
    Full-text PDF :154
    References:76
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025