Abstract:
We consider the problem of constructing a fundamental solution to a second order hyperbolic linear equation with variable coefficients depending on the space variable x∈Rn. Under the assumption of high but finite smoothness of the coefficients, we write out the structure of a fundamental solution, establish smoothness of the coefficients of the expansion of its singular part, and characterize smoothness of the regular part.
Keywords:
fundamental solution, second order hyperbolic equation, smoothness of solutions.
Citation:
V. G. Romanov, “On smoothness of a fundamental solution to a second order hyperbolic equation”, Sibirsk. Mat. Zh., 50:4 (2009), 883–889; Siberian Math. J., 50:4 (2009), 700–705
\Bibitem{Rom09}
\by V.~G.~Romanov
\paper On smoothness of a~fundamental solution to a~second order hyperbolic equation
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 4
\pages 883--889
\mathnet{http://mi.mathnet.ru/smj2011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583627}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 4
\pages 700--705
\crossref{https://doi.org/10.1007/s11202-009-0080-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268837600018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349943732}
Linking options:
https://www.mathnet.ru/eng/smj2011
https://www.mathnet.ru/eng/smj/v50/i4/p883
This publication is cited in the following 14 articles:
M. Yu. Kokurin, “Edinstvennost resheniya uravneniya M.M. Lavrenteva s istochnikami na okruzhnosti”, Izv. vuzov. Matem., 2025, no. 2, 53–60
M. M. Kokurin, V. V. Klyuchev, A. V. Gavrilova, “Uniqueness of a Solution to the Lavrent'ev Integral Equation in n-Dimensional Space”, Comput. Math. and Math. Phys., 64:3 (2024), 416
S. Z. Dzhamalov, Sh. Sh. Khudoykulov, “On Linear Two-Point Inverse Problem for a Multidimensional Wave Equation with Semi-Nonlocal Boundary Conditions”, Lobachevskii J Math, 45:3 (2024), 1059
Ahcene Ghandriche, Mourad Sini, “Simultaneous Reconstruction of Optical and Acoustical Properties in Photoacoustic Imaging Using Plasmonics”, SIAM J. Appl. Math., 83:4 (2023), 1738
M. Yu. Kokurin, “Completeness of asymmetric products of harmonic functions and uniqueness of the solution
to the Lavrent'ev equation in inverse wave sounding problems”, Izv. Math., 86:6 (2022), 1123–1142
M. Yu. Kokurin, V. V. Klyuchev, “Usloviya edinstvennosti i chislennaya approksimatsiya resheniya integralnogo uravneniya M.M. Lavrenteva”, Sib. zhurn. vychisl. matem., 25:4 (2022), 441–458
M. Yu. Kokurin, V. V. Klyuchev, “Uniqueness Conditions and Numerical Approximation of the Solution to M. M. Lavrentiev's Integral Equation”, Numer. Analys. Appl., 15:4 (2022), 364
Kokurin M.Yu., “Completeness of the Asymmetric Products of Solutions of a Second-Order Elliptic Equation and the Uniqueness of the Solution of An Inverse Problem For the Wave Equation”, Differ. Equ., 57:2 (2021), 241–250
A. I. Kozlov, M. Yu. Kokurin, “On Lavrent'ev-type integral equations in coefficient inverse problems for wave equations”, Comput. Math. Math. Phys., 61:9 (2021), 1470–1484
Rakesh, Sacks P., “Uniqueness for a hyperbolic inverse problem with angular control on the coefficients”, J. Inverse Ill-Posed Probl., 19:1 (2011), 107–126
Beilina L., Klibanov M.V., “Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D”, J. Inverse Ill-Posed Probl., 18:1 (2010), 85–132
Klibanov M.V., Fiddy M.A., Beilina L., Pantong N., Schenk J., “Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem”, Inverse Problems, 26:4 (2010), 045003, 30 pp.
Beilina L., Klibanov M.V., “Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm”, Inverse Problems, 26:12 (2010), 125009, 30 pp.
Beilina L., Klibanov M.V., “Global convergence for Inverse Problems”, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1281, 2010, 1056–1058