Abstract:
A subgroup $H$ is called $\mathscr M$-supplemented in a finite group $G$, if there exists a subgroup $B$ of $G$ such that $G=HB$ and $H_1B$ is a proper subgroup of $G$ for every maximal subgroup $H_1$ of $H$. We investigate the influence of $\mathscr M$-supplementation of Sylow subgroups and obtain a condition for solvability and $p$-supersolvability of finite groups.
Citation:
L. Miao, G. Qian, “A condition for the solvability of finite groups”, Sibirsk. Mat. Zh., 50:4 (2009), 865–871; Siberian Math. J., 50:4 (2009), 687–691
\Bibitem{MiaQia09}
\by L.~Miao, G.~Qian
\paper A condition for the solvability of finite groups
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 4
\pages 865--871
\mathnet{http://mi.mathnet.ru/smj2009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583625}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 4
\pages 687--691
\crossref{https://doi.org/10.1007/s11202-009-0078-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268837600016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349952053}
Linking options:
https://www.mathnet.ru/eng/smj2009
https://www.mathnet.ru/eng/smj/v50/i4/p865
This publication is cited in the following 3 articles:
Miao L., Zhang J., “On a Class of Non-Solvable Groups”, J. Algebra, 496 (2018), 1–10
Zhang J., Gao B., Miao L., “Solvability of Finite Groups”, Front. Math. China, 12:6, SI (2017), 1501–1514
V. S. Monakhov, A. V. Shnyparkov, “On the $p$-supersolubility of a finite group with a $\mu$-supplemented Sylow $p$-subgroup”, Siberian Math. J., 50:4 (2009), 681–686