Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 3, Pages 687–702 (Mi smj1992)  

This article is cited in 7 scientific papers (total in 7 papers)

The Cauchy problem for operators with injective symbol in the Lebesgue space $L^2$ in a domain

I. V. Shestakov, A. A. Shlapunov

Institute of Mathematics, Siberian Federal University, Krasnoyarsk
Full-text PDF (382 kB) Citations (7)
References:
Abstract: Let $D$ be a bounded domain in $\mathbb R^n$ ($n\ge2$) with infinitely smooth boundary $\partial D$. We give some necessary and sufficient conditions for the Cauchy problem to be solvable in the Lebesgue space $L^2(D)$ in $D$ for an arbitrary differential operator $A$ having an injective principal symbol. Furthermore, using bases with double orthogonality, we construct Carleman's formula that restores a (vector-)function in $L^2(D)$ from the Cauchy data given on a relatively open connected set $\Gamma\subset\partial D$ and the values $Au$ in $D$ whenever the data belong to $L^2(\Gamma)$ and $L^2(D)$ respectively.
Keywords: ill-posed Cauchy problem, Carleman's formulas.
Received: 03.12.2007
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 3, Pages 547–559
DOI: https://doi.org/10.1007/s11202-009-0061-0
Bibliographic databases:
UDC: 517.955
Language: Russian
Citation: I. V. Shestakov, A. A. Shlapunov, “The Cauchy problem for operators with injective symbol in the Lebesgue space $L^2$ in a domain”, Sibirsk. Mat. Zh., 50:3 (2009), 687–702; Siberian Math. J., 50:3 (2009), 547–559
Citation in format AMSBIB
\Bibitem{SheShl09}
\by I.~V.~Shestakov, A.~A.~Shlapunov
\paper The Cauchy problem for operators with injective symbol in the Lebesgue space $L^2$ in a~domain
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 3
\pages 687--702
\mathnet{http://mi.mathnet.ru/smj1992}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2555892}
\elib{https://elibrary.ru/item.asp?id=12941131}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 3
\pages 547--559
\crossref{https://doi.org/10.1007/s11202-009-0061-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266951900018}
\elib{https://elibrary.ru/item.asp?id=13601926}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650471763}
Linking options:
  • https://www.mathnet.ru/eng/smj1992
  • https://www.mathnet.ru/eng/smj/v50/i3/p687
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :96
    References:49
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024