Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 3, Pages 647–668 (Mi smj1989)  

This article is cited in 4 scientific papers (total in 4 papers)

A property of the defining equations for the Lie algebra in the group classification problem for wave equations

S. V. Khabirov

Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences, Ufa
Full-text PDF (389 kB) Citations (4)
References:
Abstract: We solve the group classification problem for nonlinear hyperbolic systems of differential equations. The admissible continuous group of transformations has the Lie algebra of dimension less than 5. This main statement follows from the principal property of the defining equations of the admissible Lie algebra: the commutator of two solutions is a solution. Using equivalence transformations we classify nonlinear systems in accordance with the well-known Lie algebra structures of dimension 3 and 4.
Keywords: symmetries of differential equations, group classification, defining equations of the admissible Lie algebra.
Received: 14.11.2007
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 3, Pages 515–532
DOI: https://doi.org/10.1007/s11202-009-0058-8
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: S. V. Khabirov, “A property of the defining equations for the Lie algebra in the group classification problem for wave equations”, Sibirsk. Mat. Zh., 50:3 (2009), 647–668; Siberian Math. J., 50:3 (2009), 515–532
Citation in format AMSBIB
\Bibitem{Kha09}
\by S.~V.~Khabirov
\paper A property of the defining equations for the Lie algebra in the group classification problem for wave equations
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 3
\pages 647--668
\mathnet{http://mi.mathnet.ru/smj1989}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2555889}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 3
\pages 515--532
\crossref{https://doi.org/10.1007/s11202-009-0058-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266951900015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650479758}
Linking options:
  • https://www.mathnet.ru/eng/smj1989
  • https://www.mathnet.ru/eng/smj/v50/i3/p647
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024