Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 3, Pages 587–595 (Mi smj1983)  

This article is cited in 15 scientific papers (total in 15 papers)

A note on a result of Skiba

Ya. Lia, Sh. Qiaob, Ya. Wangb

a Dept. of Math., Guangdong Institute of Education, Guangzhou, China
b Zhongshan University, Guangzhou, China
References:
Abstract: A subgroup $H$ of a group $G$ is called weakly $s$-permutable in $G$ if there is a subnormal subgroup $T$ of $G$ such that $G=HT$ and $H\cap T\le H_{sG}$, where $H_{sG}$ is the maximal $s$-permutable subgroup of $G$ contained in $H$. We improve a nice result of Skiba to get the following
Theorem. Let $\mathscr F$ be a saturated formation containing the class of all supersoluble groups $\mathscr U$ and let $G$ be a group with $E$ a normal subgroup of $G$ such that $G/E\in\mathscr F$. Suppose that each noncyclic Sylow $p$-subgroup $P$ of $F^*(E)$ has a subgroup $D$ such that $1<|D|<|P|$ and all subgroups $H$ of $P$ with order $|H|=|D|$ are weakly $s$-permutable in $G$ for all $p\in\pi(F^*(E))$; moreover, we suppose that every cyclic subgroup of $P$ of order 4 is weakly $s$-permutable in $G$ if $P$ is a nonabelian 2-group and $|D|=2$. Then $G\in\mathscr F$.
Keywords: weakly $s$-permutable subgroup, generalized Fitting subgroup, $p$-nilpotent group, saturated formation.
Received: 10.11.2007
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 3, Pages 467–473
DOI: https://doi.org/10.1007/s11202-009-0052-1
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: Ya. Li, Sh. Qiao, Ya. Wang, “A note on a result of Skiba”, Sibirsk. Mat. Zh., 50:3 (2009), 587–595; Siberian Math. J., 50:3 (2009), 467–473
Citation in format AMSBIB
\Bibitem{LiQiaWan09}
\by Ya.~Li, Sh.~Qiao, Ya.~Wang
\paper A note on a~result of Skiba
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 3
\pages 587--595
\mathnet{http://mi.mathnet.ru/smj1983}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2555883}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 3
\pages 467--473
\crossref{https://doi.org/10.1007/s11202-009-0052-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266951900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650506425}
Linking options:
  • https://www.mathnet.ru/eng/smj1983
  • https://www.mathnet.ru/eng/smj/v50/i3/p587
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :92
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024