Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 2, Pages 453–462 (Mi smj1972)  

$\mathrm C^*$-Homomorphisms and duality of $\mathrm C^*$-discrete quantum groups

L. Jiang

Department of Mathematics, Beijing Institute of Technology, Beijing, China
References:
Abstract: Let $\mathscr D$ be a $\mathrm C^*$-discrete quantum group and let $\mathscr D_0$ be the discrete quantum group associated with $\mathscr D$. Suppose that there exists a continuous action of $\mathscr D$ on a unital $\mathrm C^*$-algebra $\mathscr A$ so that $\mathscr A$ becomes a $\mathscr D$-algebra. If there is a faithful irreducible vacuum representation $\pi$ of $\mathscr A$ on a Hilbert space $H=\mathscr A$ with a vacuum vector $\Omega$, which gives rise to a $\mathscr D$-invariant state, then there is a unique $\mathrm C^*$-representation $(\theta,H)$ of $\mathscr D$ supplemented by the action. The fixed point subspace of $\mathscr A$ under the action of $\mathscr D$ is exactly the commutant of $\theta(\mathscr D)$.
Keywords: discrete quantum group, $\mathrm C^*$-algebra, $\mathrm C^*$-homomorphism, duality.
Received: 07.05.2007
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 2, Pages 360–367
DOI: https://doi.org/10.1007/s11202-009-0041-4
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: L. Jiang, “$\mathrm C^*$-Homomorphisms and duality of $\mathrm C^*$-discrete quantum groups”, Sibirsk. Mat. Zh., 50:2 (2009), 453–462; Siberian Math. J., 50:2 (2009), 360–367
Citation in format AMSBIB
\Bibitem{Jia09}
\by L.~Jiang
\paper $\mathrm C^*$-Homomorphisms and duality of $\mathrm C^*$-discrete quantum groups
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 2
\pages 453--462
\mathnet{http://mi.mathnet.ru/smj1972}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2531769}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 2
\pages 360--367
\crossref{https://doi.org/10.1007/s11202-009-0041-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265386500020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349192228}
Linking options:
  • https://www.mathnet.ru/eng/smj1972
  • https://www.mathnet.ru/eng/smj/v50/i2/p453
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :77
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024