Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 1, Pages 222–230 (Mi smj1951)  

This article is cited in 2 scientific papers (total in 2 papers)

Torsion-free constructive nilpotent $R_p$-groups

N. G. Khisamiev

East Kazakhstan State Technical University named after D. Serikbayev
Full-text PDF (303 kB) Citations (2)
References:
Abstract: We consider a torsion-free nilpotent $R_p$-group, the $p$-rank of whose quotient by the commutant is equal to 1 and either the rank of the center by the commutant is infinite or the rank of the group by the commutant is finite. We prove that the group is constructivizable if and only if it is isomorphic to the central extension of some divisible torsion-free constructive abelian group by some torsion-free constructive abelian $R_p$-group with a computably enumerable basis and a computable system of commutators. We obtain similar criteria for groups of that type as well as divisible groups to be positively defined. We also obtain sufficient conditions for the constructivizability of positively defined groups.
Keywords: constructive group, positively enumerated group, positively defined group, constructivizable group, nilpotent group, divisible group.
Received: 18.06.2007
Revised: 28.03.2008
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 1, Pages 181–187
DOI: https://doi.org/10.1007/s11202-009-0020-9
Bibliographic databases:
UDC: 512.54+510.5
Language: Russian
Citation: N. G. Khisamiev, “Torsion-free constructive nilpotent $R_p$-groups”, Sibirsk. Mat. Zh., 50:1 (2009), 222–230; Siberian Math. J., 50:1 (2009), 181–187
Citation in format AMSBIB
\Bibitem{Khi09}
\by N.~G.~Khisamiev
\paper Torsion-free constructive nilpotent $R_p$-groups
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 1
\pages 222--230
\mathnet{http://mi.mathnet.ru/smj1951}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2502888}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 1
\pages 181--187
\crossref{https://doi.org/10.1007/s11202-009-0020-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263525700020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65149086653}
Linking options:
  • https://www.mathnet.ru/eng/smj1951
  • https://www.mathnet.ru/eng/smj/v50/i1/p222
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :84
    References:62
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024