|
Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 1, Pages 82–95
(Mi smj1939)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Strictly nontame primitive elements of the free metabelian Lie algebra of rank 3
A. N. Kabanov, V. A. Roman'kov Omsk State University
Abstract:
We prove that the free metabelian Lie algebra $M_3$ of rank 3 over an arbitrary field $K$ admits strictly nontame primitive elements.
Keywords:
Lie algebra, automorphism, tame automorphism, primitive element, free algebra, free derivation.
Received: 27.08.2007
Citation:
A. N. Kabanov, V. A. Roman'kov, “Strictly nontame primitive elements of the free metabelian Lie algebra of rank 3”, Sibirsk. Mat. Zh., 50:1 (2009), 82–95; Siberian Math. J., 50:1 (2009), 66–76
Linking options:
https://www.mathnet.ru/eng/smj1939 https://www.mathnet.ru/eng/smj/v50/i1/p82
|
Statistics & downloads: |
Abstract page: | 316 | Full-text PDF : | 92 | References: | 65 | First page: | 7 |
|