Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 1, Pages 28–39 (Mi smj1934)  

This article is cited in 5 scientific papers (total in 5 papers)

Seifert manifolds and $(1,1)$-knots

L. Grassellia, M. Mulazzanibc

a Engineering of Materials and the Environment, University of Modena and Reggio Emilia
b Department of Mathematics, University of Bologna
c C.I.R.A.M., Research Centre of Applied Mathematics
Full-text PDF (410 kB) Citations (5)
References:
Abstract: The aim of this paper is to investigate the relations between Seifert manifolds and $(1,1)$-knots. In particular, we prove that each orientable Seifert manifold with invariants
$$ \{Oo,0|-1;\underbrace{(p,q),\dots,(p,q)}_{n\ \text{times}},(l,l-1)\} $$
has the fundamental group cyclically presented by $G_n((x^q_1\cdots x^q_n)^lx^{-p}_n)$ and, moreover, it is the $n$-fold strongly-cyclic covering of the lens space $L(|nlq-p|,q)$ which is branched over the $(1,1)$-knot $K(q,q(nl-2),p-2q,p-q)$ if $p\ge2q$ and over the $(1,1)$-knot $K(p-q,2q-p,q(nl-2),p-q)$ if $p<2q$.
Keywords: Seifert manifolds, $(1,1)$-knots, cyclic branched coverings, cyclically presented groups, Heegaard diagrams.
Received: 09.04.2007
English version:
Siberian Mathematical Journal, 2009, Volume 50, Issue 1, Pages 22–31
DOI: https://doi.org/10.1007/s11202-009-0003-x
Bibliographic databases:
UDC: 515.16
Language: Russian
Citation: L. Grasselli, M. Mulazzani, “Seifert manifolds and $(1,1)$-knots”, Sibirsk. Mat. Zh., 50:1 (2009), 28–39; Siberian Math. J., 50:1 (2009), 22–31
Citation in format AMSBIB
\Bibitem{GraMul09}
\by L.~Grasselli, M.~Mulazzani
\paper Seifert manifolds and $(1,1)$-knots
\jour Sibirsk. Mat. Zh.
\yr 2009
\vol 50
\issue 1
\pages 28--39
\mathnet{http://mi.mathnet.ru/smj1934}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2502871}
\transl
\jour Siberian Math. J.
\yr 2009
\vol 50
\issue 1
\pages 22--31
\crossref{https://doi.org/10.1007/s11202-009-0003-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263525700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65149085124}
Linking options:
  • https://www.mathnet.ru/eng/smj1934
  • https://www.mathnet.ru/eng/smj/v50/i1/p28
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :84
    References:84
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024