Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 6, Pages 1411–1419 (Mi smj1928)  

This article is cited in 2 scientific papers (total in 2 papers)

Maximal subclasses of local fitting classes

N. V. Savel'eva, N. T. Vorob'ev

Vitebsk State University named after P. M. Masherov
Full-text PDF (332 kB) Citations (2)
References:
Abstract: A Fitting class $\mathfrak F$ is said to be $\pi$-maximal if $\mathfrak F$ is an inclusion maximal subclass of the Fitting class $\mathfrak S_\pi$ of all finite soluble $\pi$-groups. We prove that $\mathfrak F$ is a $\pi$-maximal Fitting class exactly when there is a prime $p\in\pi$ such that the index of the $\mathfrak F$-radical $G_\mathfrak F$ in $G$ is equal to 1 or $p$ for every $\pi$-subgroup of $G$. Hence, there exist maximal subclasses in a local Fitting class. This gives a negative answer to Skiba's conjecture that there are no maximal Fitting subclasses in a local Fitting class (see [1, Question 13.50]).
Keywords: Fitting class, maximal Fitting subclass, local Fitting class, $\mathfrak F$-radical, Lockett class, Lausch group, Fitting pair.
Received: 25.04.2007
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 6, Pages 1124–1130
DOI: https://doi.org/10.1007/s11202-008-0108-7
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: N. V. Savel'eva, N. T. Vorob'ev, “Maximal subclasses of local fitting classes”, Sibirsk. Mat. Zh., 49:6 (2008), 1411–1419; Siberian Math. J., 49:6 (2008), 1124–1130
Citation in format AMSBIB
\Bibitem{SavVor08}
\by N.~V.~Savel'eva, N.~T.~Vorob'ev
\paper Maximal subclasses of local fitting classes
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 6
\pages 1411--1419
\mathnet{http://mi.mathnet.ru/smj1928}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2499110}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 6
\pages 1124--1130
\crossref{https://doi.org/10.1007/s11202-008-0108-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261792400017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57749191052}
Linking options:
  • https://www.mathnet.ru/eng/smj1928
  • https://www.mathnet.ru/eng/smj/v49/i6/p1411
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024