Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 6, Pages 1381–1390 (Mi smj1927)  

This article is cited in 1 scientific paper (total in 1 paper)

Enumeration of maximal subalgebras in free restricted Lie algebras

V. M. Petrogradsky, A. A. Smirnov

Ulyanovsk State University, Faculty of Mathematics and Information Technologies
Full-text PDF (330 kB) Citations (1)
References:
Abstract: Given a finitely generated restricted Lie algebra $L$ over the finite field $\mathbb F_q$, and $n\ge0$, denote by $a_n(L)$ the number of restricted subalgebras $H\subseteq L$ with $\dim_{\mathbb F_q}L/H=n$. Denote by $\widetilde a_n(L)$ the number of the subalgebras satisfying the maximality condition as well. Considering the free restricted Lie algebra $L=F_d$ of rank $d\ge2$, we find the asymptotics of $\widetilde a_n(F_d)$ and show that it coincides with the asymptotics of $a_n(F_d)$ which was found previously by the first author. Our approach is based on studying the actions of restricted algebras by derivations on the truncated polynomial rings. We establish that the maximal subalgebras correspond to the so-called primitive actions. This means that “almost all” restricted subalgebras $H\subset F_d$ of finite codimension are maximal, which is analogous to the corresponding results for free groups and free associative algebras.
Keywords: restricted Lie algebra, Witt algebra, coalgebras, enumerative combinatorics, subgroup growth.
Received: 05.04.2007
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 6, Pages 1101–1108
DOI: https://doi.org/10.1007/s11202-008-0106-9
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: V. M. Petrogradsky, A. A. Smirnov, “Enumeration of maximal subalgebras in free restricted Lie algebras”, Sibirsk. Mat. Zh., 49:6 (2008), 1381–1390; Siberian Math. J., 49:6 (2008), 1101–1108
Citation in format AMSBIB
\Bibitem{PetSmi08}
\by V.~M.~Petrogradsky, A.~A.~Smirnov
\paper Enumeration of maximal subalgebras in free restricted Lie algebras
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 6
\pages 1381--1390
\mathnet{http://mi.mathnet.ru/smj1927}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2499108}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 6
\pages 1101--1108
\crossref{https://doi.org/10.1007/s11202-008-0106-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261792400015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57749198261}
Linking options:
  • https://www.mathnet.ru/eng/smj1927
  • https://www.mathnet.ru/eng/smj/v49/i6/p1381
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :66
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024