Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 4, Pages 928–933 (Mi smj1889)  

This article is cited in 2 scientific papers (total in 2 papers)

Binary Lie algebras satisfying the third Engel condition

V. T. Filippov
Full-text PDF (267 kB) Citations (2)
References:
Abstract: Let $\Phi$ be a unital associative commutative ring with $\frac12$. The local nilpotency is proved of binary Lie $\Phi$-algebras satisfying the third Engel condition. Moreover, it is proved that this class of algebras does not contain semiprime algebras.
Keywords: binary Lie algebra, Engel algebra, locally nilpotent algebra, semiprime algebra.
Received: 01.02.1982
Revised: 22.12.2006
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 4, Pages 744–748
DOI: https://doi.org/10.1007/s11202-008-0071-3
Bibliographic databases:
UDC: 519.48
Language: Russian
Citation: V. T. Filippov, “Binary Lie algebras satisfying the third Engel condition”, Sibirsk. Mat. Zh., 49:4 (2008), 928–933; Siberian Math. J., 49:4 (2008), 744–748
Citation in format AMSBIB
\Bibitem{Fil08}
\by V.~T.~Filippov
\paper Binary Lie algebras satisfying the third Engel condition
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 4
\pages 928--933
\mathnet{http://mi.mathnet.ru/smj1889}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2456702}
\zmath{https://zbmath.org/?q=an:1164.17019}
\elib{https://elibrary.ru/item.asp?id=10429018}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 4
\pages 744--748
\crossref{https://doi.org/10.1007/s11202-008-0071-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258913200017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549100811}
Linking options:
  • https://www.mathnet.ru/eng/smj1889
  • https://www.mathnet.ru/eng/smj/v49/i4/p928
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024