Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 4, Pages 837–854 (Mi smj1882)  

This article is cited in 6 scientific papers (total in 6 papers)

An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions

A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (373 kB) Citations (6)
References:
Abstract: We obtain an integro-local limit theorem for the sum $S(n)=\xi(1)+\cdots+\xi(n)$ of independent identically distributed random variables with distribution whose right tail varies regularly; i.e., it has the form $\mathbf P(\xi\ge t)=t^{-\beta}L(t)$ with $\beta>2$ and some slowly varying function $L(t)$. The theorem describes the asymptotic behavior on the whole positive half-axis of the probabilities
$$ \mathbf P(S(n)\in[x,x+\Delta)) $$
as $x\to\infty$ for a fixed $\Delta>0$; i.e., in the domain where the normal approximation applies, in the domain where $S(n)$ is approximated by the distribution of its maximum term, as well as at the “junction” of these two domains.
Keywords: regularly varying distribution, integro-local theorem, integral theorem, theorem applicable on the whole half-axis, function of deviations, large deviations, domain of normal approximation, domain of maximum term approximation.
Received: 16.01.2007
Revised: 14.05.2007
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 4, Pages 669–683
DOI: https://doi.org/10.1007/s11202-008-0064-2
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: A. A. Mogul'skii, “An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions”, Sibirsk. Mat. Zh., 49:4 (2008), 837–854; Siberian Math. J., 49:4 (2008), 669–683
Citation in format AMSBIB
\Bibitem{Mog08}
\by A.~A.~Mogul'skii
\paper An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 4
\pages 837--854
\mathnet{http://mi.mathnet.ru/smj1882}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2456695}
\zmath{https://zbmath.org/?q=an:1164.60332}
\elib{https://elibrary.ru/item.asp?id=10429011}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 4
\pages 669--683
\crossref{https://doi.org/10.1007/s11202-008-0064-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258913200010}
\elib{https://elibrary.ru/item.asp?id=13584085}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549083419}
Linking options:
  • https://www.mathnet.ru/eng/smj1882
  • https://www.mathnet.ru/eng/smj/v49/i4/p837
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :87
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024