Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 3, Pages 698–706 (Mi smj1871)  

Behavior of the extended complexity of irreducible 3-manifolds

O. N. Shatnykh

Kurgan State University
References:
Abstract: We construct the extended complexity of irreducible 3-manifolds; unlike the usual complexity [1] it is not an integer, but an ordered tuple of five integers. The benefit of extended complexity is that it always decreases when a manifold is cut along some incompressible boundary incompressible surface.
Keywords: 3-manifold, spine, complexity.
Received: 28.06.2007
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 3, Pages 562–568
DOI: https://doi.org/10.1007/s11202-008-0053-5
Bibliographic databases:
UDC: 515.16
Language: Russian
Citation: O. N. Shatnykh, “Behavior of the extended complexity of irreducible 3-manifolds”, Sibirsk. Mat. Zh., 49:3 (2008), 698–706; Siberian Math. J., 49:3 (2008), 562–568
Citation in format AMSBIB
\Bibitem{Sha08}
\by O.~N.~Shatnykh
\paper Behavior of the extended complexity of irreducible 3-manifolds
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 3
\pages 698--706
\mathnet{http://mi.mathnet.ru/smj1871}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2442547}
\zmath{https://zbmath.org/?q=an:1164.57007}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 3
\pages 562--568
\crossref{https://doi.org/10.1007/s11202-008-0053-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256329000017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44349162301}
Linking options:
  • https://www.mathnet.ru/eng/smj1871
  • https://www.mathnet.ru/eng/smj/v49/i3/p698
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024