|
Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 3, Pages 568–573
(Mi smj1862)
|
|
|
|
Quasivarieties of pseudo-$MV$-algebras
O. A. Kuryleva Altai State University
Abstract:
Denote by $\varUpsilon_1$ the collection of quasivarieties of pseudo-$MV$-algebras; and by $\varUpsilon_2$, the collection of quasivarieties of lattice-ordered groups. With respect to the set-theoretic inclusion, $\varUpsilon_1$ and $\varUpsilon_2$ are lattices. We note some properties of $\varUpsilon_1$ and construct an injective mapping $\varphi$ of $\varUpsilon_2$ into $\varUpsilon_1$ such that $Z_1\subseteq Z_2\Leftrightarrow\varphi(Z_1)\subseteq\varphi(Z_2)$ for all $Z_1,Z_2\in\varUpsilon_2$.
Keywords:
lattice-ordered group, pseudo-$MV$-algebra, quasivariety.
Received: 29.05.2007
Citation:
O. A. Kuryleva, “Quasivarieties of pseudo-$MV$-algebras”, Sibirsk. Mat. Zh., 49:3 (2008), 568–573; Siberian Math. J., 49:3 (2008), 452–456
Linking options:
https://www.mathnet.ru/eng/smj1862 https://www.mathnet.ru/eng/smj/v49/i3/p568
|
Statistics & downloads: |
Abstract page: | 232 | Full-text PDF : | 73 | References: | 45 |
|