Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 6, Pages 1305–1321 (Mi smj1809)  

This article is cited in 7 scientific papers (total in 7 papers)

Some properties of Van Koch's curves

S. P. Ponomarev

Institute of Mathematics, Pomeranian Pedagogical Academy
Full-text PDF (378 kB) Citations (7)
References:
Abstract: We investigate the properties of an integral operator $T$ with a Cauchy kernel. The operator acts from $L^\infty(\Gamma,\mu)$, where $\Gamma$ is a Van Koch curve, to the space of functions $\mathbb C\to\mathbb C$. We prove that the range of $T$ is nontrivial and lies in the space $\operatorname{AC}(\Gamma)$ of functions continuous in $\mathbb C$, vanishing at $\infty$, and analytic outside $\Gamma$. We also show that $T$ is injective and compact while satisfying some special functional equation. These results may be regarded as a natural continuation of our research on the problem of $\operatorname{AC}$-removability of quasiconformal curves whose solution was announced in [1] for the first time and supplemented later with some other properties of Van Koch's curves [2], [3]. In this paper the problem is discussed in a more general setting and, in particular, all important details lacking in [1] are given. Some open problems are formulated.
Keywords: Cauchy-type integral, Van Koch's curve, quasiconformal mapping, $\operatorname{AC}$-removability, pseudo-analytic mapping, compact operator.
Received: 01.08.2006
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 6, Pages 1046–1059
DOI: https://doi.org/10.1007/s11202-007-0107-0
Bibliographic databases:
UDC: 517.518.1+517.518.17
Language: Russian
Citation: S. P. Ponomarev, “Some properties of Van Koch's curves”, Sibirsk. Mat. Zh., 48:6 (2007), 1305–1321; Siberian Math. J., 48:6 (2007), 1046–1059
Citation in format AMSBIB
\Bibitem{Pon07}
\by S.~P.~Ponomarev
\paper Some properties of Van Koch's curves
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 6
\pages 1305--1321
\mathnet{http://mi.mathnet.ru/smj1809}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2397512}
\zmath{https://zbmath.org/?q=an:1164.47324}
\elib{https://elibrary.ru/item.asp?id=9552798}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 6
\pages 1046--1059
\crossref{https://doi.org/10.1007/s11202-007-0107-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251724400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36749064942}
Linking options:
  • https://www.mathnet.ru/eng/smj1809
  • https://www.mathnet.ru/eng/smj/v48/i6/p1305
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :116
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024