Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 6, Pages 1228–1245 (Mi smj1803)  

This article is cited in 8 scientific papers (total in 8 papers)

Local stability of mappings with bounded distortion on Heisenberg groups

D. V. Isangulova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (398 kB) Citations (8)
References:
Abstract: This is the second of the author's three papers on stability in the Liouville theorem on the Heisenberg group. The aim is to prove that each mapping with bounded distortion of a John domain on the Heisenberg group is close to a conformal mapping with order of closeness $\sqrt{K-1}$ in the uniform norm and order of closeness $K-1$ in the Sobolev norm $L^1_p$ for all $p<\frac C{K-1}$.
In this paper we prove a local variant of the desired result: each mapping on a ball with bounded distortion and distortion coefficient $K$ near to 1 is close on a smaller ball to a conformal mapping with order of closeness $\sqrt{K-1}$ in the uniform norm and order of closeness $K-1$ in the Sobolev norm $L^1_p$ for all $p<\frac C{K-1}$. We construct an example that demonstrates the asymptotic sharpness of the order of closeness of a mapping with bounded distortion to a conformal mapping in the Sobolev norm.
Keywords: Heisenberg group, mapping with bounded distortion, coercive estimate, stability.
Received: 11.10.2005
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 6, Pages 984–997
DOI: https://doi.org/10.1007/s11202-007-0101-6
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: D. V. Isangulova, “Local stability of mappings with bounded distortion on Heisenberg groups”, Sibirsk. Mat. Zh., 48:6 (2007), 1228–1245; Siberian Math. J., 48:6 (2007), 984–997
Citation in format AMSBIB
\Bibitem{Isa07}
\by D.~V.~Isangulova
\paper Local stability of mappings with bounded distortion on Heisenberg groups
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 6
\pages 1228--1245
\mathnet{http://mi.mathnet.ru/smj1803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2397505}
\zmath{https://zbmath.org/?q=an:1164.30363}
\elib{https://elibrary.ru/item.asp?id=9552792}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 6
\pages 984--997
\crossref{https://doi.org/10.1007/s11202-007-0101-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251724400003}
\elib{https://elibrary.ru/item.asp?id=13555718}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36749077529}
Linking options:
  • https://www.mathnet.ru/eng/smj1803
  • https://www.mathnet.ru/eng/smj/v48/i6/p1228
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :95
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024