Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 1, Pages 169–184 (Mi smj1706)  

The central and secondary link problems for an equation and a second rank system

V. R. Smilyanskii
Abstract: For the equation
\begin{equation} \sum_{\nu=0}^{n}P_\nu(z)y^{(\nu)}=0, \quad P_\nu(z)=a_{\nu0}+a_{\nu1}z, \quad P_n(z)=1, \tag{1} \end{equation}
($a_{\nu0}$, $a_{\nu1}$ are parameters) and the system of $n$ equations
\begin{equation} \bar{y}^{(1)}=(A_0+A_1z)\bar{y}, \quad A_1=\operatorname{diag}\{0,\dots,0,\lambda\}. \tag{2} \end{equation}
($A_0$, $A_1$ are constant matrices), fundamental matrices $\Phi(z)$ and $\Phi^*(z)$ are constructed each of which has an asymptotic expansion in parabolic cylinder functions as well as an asymptotic expansion in powers of $1/z$ in open halfplanes. The following results are obtained: a) the constant matrix appearing in the relation $\Phi(z)=\Phi^*(z)F$ is found (the secondary problem); b) expansions of $\Phi(z)$ and $\Phi^*(z)$ in series in powers of $z$ are established (the central problem).
Received: 16.01.1991
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 1, Pages 150–164
DOI: https://doi.org/10.1007/BF00971251
Bibliographic databases:
UDC: 517.925.71
Language: Russian
Citation: V. R. Smilyanskii, “The central and secondary link problems for an equation and a second rank system”, Sibirsk. Mat. Zh., 34:1 (1993), 169–184; Siberian Math. J., 34:1 (1993), 150–164
Citation in format AMSBIB
\Bibitem{Smi93}
\by V.~R.~Smilyanskii
\paper The central and secondary link problems for an equation and a second rank system
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 1
\pages 169--184
\mathnet{http://mi.mathnet.ru/smj1706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1216846}
\zmath{https://zbmath.org/?q=an:0835.34008}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 1
\pages 150--164
\crossref{https://doi.org/10.1007/BF00971251}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KZ84700017}
Linking options:
  • https://www.mathnet.ru/eng/smj1706
  • https://www.mathnet.ru/eng/smj/v34/i1/p169
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025