Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 1, Pages 145–156 (Mi smj1704)  

On existence of a global solution to the initial-boundary value problem for the Boltzmann equation

A. Sakabekov
Abstract: For the initial-boundary value problem
\begin{gather*} \frac{\partial f}{\partial t}+\biggl(v,\frac{\partial f}{\partial x}\biggr)=I(f,f), \quad (t,x,v)\in(0,T]\times G\times R_3^v, \\ f(t,x,v)|_{t=0}=f^0(x,v), \quad (x,v)\in G\times R_3^v, \\ f(t,x_{\partial G},v)=g(t,x_{\partial G},v), \quad (v,n_{\partial G})<0, \end{gather*}
the existence of a global solution in the space $C([0,T]$; $L^1(G\times R_3^v))$ $\forall\,T<\infty$ is proved under the conditions
\begin{gather*} f^0\in L^1\bigl(G\times\mathbf{R}_3^v\bigr), \quad f^0\ge0, \\ \int_{G\times\mathbf{R}_3^v}f^0(1+|v|^2+|{\ln f^0}|)\,dx\,dv<\infty, \quad |v|g\in C\bigl([0,T];\,L^1\bigl(\partial G\times\mathbf{R}_3^-\bigr)\bigr), \quad g\ge0, \\ \sup_{t\in[0,T]}\int_{\partial G\times\mathbf{R}_3^-}|v|g(1+|v|^2+|{\ln g}|)\,dx\,dv<\infty, \quad B\in L^1\bigl(S_2\times\mathbf{R}_3^v\bigr), \quad B\ge0, \end{gather*}
where $G$ is a bounded convex domain in $\mathbf{R}_3^x$ with boundary $\partial G$; $B$, the collision cross section; $S_2$, the unit sphere; and $\mathbf{R}_3^-=\bigl\{v\in\mathbf{R}_3^v:(v,n_{\partial G})<0\bigr\}$.
Received: 10.10.1991
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 1, Pages 128–138
DOI: https://doi.org/10.1007/BF00971249
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: A. Sakabekov, “On existence of a global solution to the initial-boundary value problem for the Boltzmann equation”, Sibirsk. Mat. Zh., 34:1 (1993), 145–156; Siberian Math. J., 34:1 (1993), 128–138
Citation in format AMSBIB
\Bibitem{Sak93}
\by A.~Sakabekov
\paper On existence of a global solution to the initial-boundary value problem for the Boltzmann equation
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 1
\pages 145--156
\mathnet{http://mi.mathnet.ru/smj1704}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1216844}
\zmath{https://zbmath.org/?q=an:0842.35124}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 1
\pages 128--138
\crossref{https://doi.org/10.1007/BF00971249}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KZ84700015}
Linking options:
  • https://www.mathnet.ru/eng/smj1704
  • https://www.mathnet.ru/eng/smj/v34/i1/p145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024