Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 2, Pages 184–190 (Mi smj1687)  

The distance between a weighted shift operator and integral operators

I. I. Shamaev
Abstract: In the sequel $(X,\mathcal{A},\mu)$ and $(Y,\mathcal{B},\nu)$ are finite measure spaces. An operator $S\colon L_{\mu}^p \to L_{\nu}^p$, is called a weighted shift operator if it is representable as $\pi T_\varphi $, where $\pi$ is the operator of multiplication by a function $\pi$, $T_\varphi\colon x\to x\circ\varphi$ and $\varphi\colon Y\to X$ is a measurable mapping.
Theorem. {\it If $\pi T_\varphi\colon L_{\mu}^p\to L_{\nu}^p$ is a bounded weighted shift operator, $1\le p<\infty$, and$\pi\in L_{\nu}^p $, then $T_\varphi^\circ(|\pi|)\in L_{\mu}^\infty$ and}
$$ \|\pi T_\varphi\|=\bigl(\bigl\|T_\varphi^\circ(|\pi|^p)\bigr\|_{L^\infty}\bigr)^{1/p}. $$

Theorem. {\it If $T$, $S\colon L_{\mu}^p \to L_{\mu}^p$ are bounded operators, $1< p<\infty$, where $T$ is an integral operator and $S$ is a weighted shift operator then}
$$ \|S-T\|\ge\|S\|. $$
Received: 14.10.1991
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 2, Pages 363–368
DOI: https://doi.org/10.1007/BF00970964
Bibliographic databases:
UDC: 513.88
Language: Russian
Citation: I. I. Shamaev, “The distance between a weighted shift operator and integral operators”, Sibirsk. Mat. Zh., 34:2 (1993), 184–190; Siberian Math. J., 34:2 (1993), 363–368
Citation in format AMSBIB
\Bibitem{Sha93}
\by I.~I.~Shamaev
\paper The distance between a~weighted shift operator and integral operators
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 2
\pages 184--190
\mathnet{http://mi.mathnet.ru/smj1687}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1223769}
\zmath{https://zbmath.org/?q=an:0833.47029}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 2
\pages 363--368
\crossref{https://doi.org/10.1007/BF00970964}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LK58100020}
Linking options:
  • https://www.mathnet.ru/eng/smj1687
  • https://www.mathnet.ru/eng/smj/v34/i2/p184
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024