Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 2, Pages 180–183 (Mi smj1686)  

On groups with a splitting automorphism of prime order

E. I. Khukhro
Abstract: An automorphism $\varphi$ of a group $G$ is called a splitting automorphism of prime order $p$, if $\varphi=1$ and $x\cdot x^{\varphi}\cdot x^{\varphi^2}\cdot\dots\cdot x^{\varphi^{p-1}}=1$ for all $x\in G$. In [E. I. Khukhro, “Locally nilpotent groups admitting a splitting automorphism of prime orded,” Mat. Sb., 130, No. 1, 120–127 (1986)] there was obtained a positive solution to the restricted Burnside problem for the variety $\mathfrak{M}_p$ of all groups with splitting automorphism of prime order p, by establishing that the locally nilpotent groups in $\mathfrak{M}_p$ form a subvariety $LN\mathfrak{M}_p$. We conjecture that $LN\mathfrak{M}_p$ is a join of the subvariety $\mathfrak{B}_p\cap LN\mathfrak{M}_p$ of gruops of prime exponent and the subveriety $\mathfrak{N}_{c(p)}\cap\mathfrak{M}_p$ of nilpotent groups of some $p$-bounded class. In the article the following result is proved in this direction: there exist $p$-bounded numbers $k(p)$ and $l(p)$ such that every group $G$ in $LN\mathfrak{M}_p$ satisfies the identities $\bigl[x_1^{p^{k(p)}},x_2^{p^{k(p)}},\dots,x_{h+1}^{p^{k(p)}}\bigr]=1$ which means that the subgroup $G^{p^{k(p)}}$ is nilpotent of class $h(p)$; i.e., $\gamma_{h(p)+1}\bigl(G^{p^{k(p)}}\bigr)=1$) и $[x_1,x_2,\dots,x_{h+1}]^{p^{l(p)}}=1$, where $h(p)$ is the Higman function the nilpotency class of a nilpotent group with regular automorphism of prime orded $p$.
Received: 28.04.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 2, Pages 360–362
DOI: https://doi.org/10.1007/BF00970963
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: E. I. Khukhro, “On groups with a splitting automorphism of prime order”, Sibirsk. Mat. Zh., 34:2 (1993), 180–183; Siberian Math. J., 34:2 (1993), 360–362
Citation in format AMSBIB
\Bibitem{Khu93}
\by E.~I.~Khukhro
\paper On groups with a splitting automorphism of prime order
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 2
\pages 180--183
\mathnet{http://mi.mathnet.ru/smj1686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1223768}
\zmath{https://zbmath.org/?q=an:0841.20030}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 2
\pages 360--362
\crossref{https://doi.org/10.1007/BF00970963}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LK58100019}
Linking options:
  • https://www.mathnet.ru/eng/smj1686
  • https://www.mathnet.ru/eng/smj/v34/i2/p180
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024