Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 2, Pages 173–179 (Mi smj1685)  

This article is cited in 2 scientific papers (total in 2 papers)

A contact problem for a beam under the conditions of plasticity and creep

A. M. Khludnev
Full-text PDF (551 kB) Citations (2)
Abstract: A boundary value problem that describes a contact between a beam and a rigid stamp is considered in a precise statement. Here, the equation of state is most general in a sense and involves such properties of material of the beam as elasticity, plasticity, and creep. The presence of two constraints in the form of inequalities imposed on a solution determines the main difficulty in studying the problem. The first constraint has geometric character and presents the impermeability condition $\omega-v\varphi_x\geqslant\varphi$, where $v$ and $\omega$ are the tangent and normal displacements of the points of the beam and the function $\varphi$ describes the shape of the stamp. The second constraint reveals mechanical nature and presents the plasticity condition $|m|\leqslant k$, where m is the bending moment. In this connection, the boundary value problem is formulated as a variational inequality subject to the above-indicated constraints. The main result consists in proving an existence theorem for solutions to the problem in question.
Received: 03.12.1991
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 2, Pages 353–359
DOI: https://doi.org/10.1007/BF00970962
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: A. M. Khludnev, “A contact problem for a beam under the conditions of plasticity and creep”, Sibirsk. Mat. Zh., 34:2 (1993), 173–179; Siberian Math. J., 34:2 (1993), 353–359
Citation in format AMSBIB
\Bibitem{Khl93}
\by A.~M.~Khludnev
\paper A contact problem for a~beam under the conditions of plasticity and creep
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 2
\pages 173--179
\mathnet{http://mi.mathnet.ru/smj1685}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1223767}
\zmath{https://zbmath.org/?q=an:0833.73047}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 2
\pages 353--359
\crossref{https://doi.org/10.1007/BF00970962}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LK58100018}
Linking options:
  • https://www.mathnet.ru/eng/smj1685
  • https://www.mathnet.ru/eng/smj/v34/i2/p173
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:354
    Full-text PDF :149
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024