Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 2, Pages 170–172 (Mi smj1684)  

A condition sufficient for nonexistence of a cycle in a two-dimensional system quadratic in one of the variables

V. A. Toponogov
Full-text PDF (224 kB) Citations (1)
Abstract: For the system $\dot x=h_1(x)+h_2(x)y=P(x,y)$, $\dot y=f_1(x)+f_2(x)y+f_3(x)y^2=Q(x,y)$, the following theorem is proved.
Theorem. If the divergence of the vector field $(P,Q)$ does not change its sign and is not equal identically to zero along the isocline $h_1(x)+h_2(x)y=0$, then the system has no closed trajectory.
Received: 13.06.1990
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 2, Pages 350–352
DOI: https://doi.org/10.1007/BF00970961
Bibliographic databases:
UDC: 517.926
Language: Russian
Citation: V. A. Toponogov, “A condition sufficient for nonexistence of a cycle in a two-dimensional system quadratic in one of the variables”, Sibirsk. Mat. Zh., 34:2 (1993), 170–172; Siberian Math. J., 34:2 (1993), 350–352
Citation in format AMSBIB
\Bibitem{Top93}
\by V.~A.~Toponogov
\paper A condition sufficient for nonexistence of a~cycle in a two-dimensional system quadratic in one of the variables
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 2
\pages 170--172
\mathnet{http://mi.mathnet.ru/smj1684}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1223766}
\zmath{https://zbmath.org/?q=an:0835.34032}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 2
\pages 350--352
\crossref{https://doi.org/10.1007/BF00970961}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LK58100017}
Linking options:
  • https://www.mathnet.ru/eng/smj1684
  • https://www.mathnet.ru/eng/smj/v34/i2/p170
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024