Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 2, Pages 42–51 (Mi smj1671)  

On stable stationary solutions to a quasilinear parabolic equation

M. P. Vishnevskii
Abstract: The asymptotic behavior of solutions to boundary value problems for quasilinear autono¬mous parabolic equations is studied. Let $S_1$ denote the set of stationary solutions $\varphi(x)$ to the problem which possess the following property: the spectral problem produced by the elliptic operator linearized on $\varphi(x)$ has at most one eigenvalue in the right halfplane of the complex plane. Also, assume that the nonlinear terms of the boundary value problem depend analytically on the unknown function and its derivatives. It is proved that either the set $S_1$ consists of isolated stationary solutions, or $S_1$ is a connected unbounded ordered family of stationary solutions. Let $S_1$ consist of isolated stationary solutions, and $\psi(x)$ be a nonstable stationary solution in $S_1$. It is proved that the stable manifold $W^S(\psi)$ divides the set of initial data into two components converging to different stationary solutions as $t\to+\infty$.
Received: 16.10.1991
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 2, Pages 233–241
DOI: https://doi.org/10.1007/BF00970948
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: M. P. Vishnevskii, “On stable stationary solutions to a quasilinear parabolic equation”, Sibirsk. Mat. Zh., 34:2 (1993), 42–51; Siberian Math. J., 34:2 (1993), 233–241
Citation in format AMSBIB
\Bibitem{Vis93}
\by M.~P.~Vishnevskii
\paper On stable stationary solutions to a~quasilinear parabolic equation
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 2
\pages 42--51
\mathnet{http://mi.mathnet.ru/smj1671}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1223753}
\zmath{https://zbmath.org/?q=an:0838.35063}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 2
\pages 233--241
\crossref{https://doi.org/10.1007/BF00970948}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LK58100004}
Linking options:
  • https://www.mathnet.ru/eng/smj1671
  • https://www.mathnet.ru/eng/smj/v34/i2/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024