Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 3, Pages 132–143 (Mi smj1660)  

This article is cited in 15 scientific papers (total in 15 papers)

Bimetric physical structures of rank $(n+1,2)$

G. G. Mikhailichenko
Abstract: For $s\ge1$ and $n\ge m\ge1$, we give a concise definition for an s-metric physical structure of rank $(n+1,m+1)$ determined by an $s$-component function $f=(f^1,\ldots,f^s)$ on sets $\mathfrak{M}$ and $\mathfrak{N}$ (an $sm$-dimensional manifold and an $sn$-dimensional manifold). The function $f$ is denned on $\mathfrak{G}_f\subset\mathfrak{M}\times\mathfrak{N}$ and carries each pair in $\mathfrak{G}_f$ into $s$ numbers; $f$ is called an $s$-metric. We prove that bimetric $(s=2)$ physical structures of rank $(n+1,2)$ exist only if $n=1,2,3,4$. Explicit coordinate expressions of all (up to equivalence) two-metrics are provided. The study is based on the group properties of physical structures which were earlier studied by the author and on a complete classification of finite-dimensional Lie groups of plane transformations. Some of the two-metrics obtained specify natural binary operations of addition and multiplication in $\mathbb{R}^2$ which can, in particular, be used to define three types of two-dimensional complex numbers (ordinary, dual, and double).
Received: 09.01.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 3, Pages 513–522
DOI: https://doi.org/10.1007/BF00971227
Bibliographic databases:
UDC: 512.816
Language: Russian
Citation: G. G. Mikhailichenko, “Bimetric physical structures of rank $(n+1,2)$”, Sibirsk. Mat. Zh., 34:3 (1993), 132–143; Siberian Math. J., 34:3 (1993), 513–522
Citation in format AMSBIB
\Bibitem{Mik93}
\by G.~G.~Mikhailichenko
\paper Bimetric physical structures of rank $(n+1,2)$
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 3
\pages 132--143
\mathnet{http://mi.mathnet.ru/smj1660}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1241176}
\zmath{https://zbmath.org/?q=an:0828.53045}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 3
\pages 513--522
\crossref{https://doi.org/10.1007/BF00971227}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LR86400013}
Linking options:
  • https://www.mathnet.ru/eng/smj1660
  • https://www.mathnet.ru/eng/smj/v34/i3/p132
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025