Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 3, Pages 118–121 (Mi smj1658)  

Boundedly isometric but not isometric spaces

A. V. Kuz'minykh
Abstract: The existence of a continuum of smooth complete (in intrinsic metrics) surfaces $\mathcal{M}_{\alpha}\subset\mathbb{R}^n$, $n\ge3$, is proved such that are homeomorphic to $\mathbb{R}^{n-1}$, any two of which are not isometric but possess the following property: every bounded domain on the first surface is isometrically embeddable into the second surface (and vice versa). Also, we prove the existence of $2^\mathfrak{c}$ subsets in the plane $\mathbb{R}^2$? (where $\mathfrak{c}$ is the cardinality of the continuum) each of which has diameter 1 and is embeddable into any other, with all the subsets pairwise nonhomeomorphic.
Received: 19.06.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 3, Pages 500–503
DOI: https://doi.org/10.1007/BF00971225
Bibliographic databases:
UDC: 514.12
Language: Russian
Citation: A. V. Kuz'minykh, “Boundedly isometric but not isometric spaces”, Sibirsk. Mat. Zh., 34:3 (1993), 118–121; Siberian Math. J., 34:3 (1993), 500–503
Citation in format AMSBIB
\Bibitem{Kuz93}
\by A.~V.~Kuz'minykh
\paper Boundedly isometric but not isometric spaces
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 3
\pages 118--121
\mathnet{http://mi.mathnet.ru/smj1658}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1241174}
\zmath{https://zbmath.org/?q=an:0803.54028}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 3
\pages 500--503
\crossref{https://doi.org/10.1007/BF00971225}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LR86400011}
Linking options:
  • https://www.mathnet.ru/eng/smj1658
  • https://www.mathnet.ru/eng/smj/v34/i3/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025