Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 3, Pages 43–61 (Mi smj1651)  

This article is cited in 23 scientific papers (total in 23 papers)

Splitting a multiple eigenvalue in the boundary value problem for a membrane clamped on a small part of the boundary

R. R. Gadyl'shin
Abstract: We prove that, under a singular perturbation of boundary conditions, a multiple eigenvalue $\lambda_0$ in the Neumann problem in a bounded connected domain $\Omega\subset\mathbb{R}^2$ with boundary $\Gamma_0\in C^\infty$ splits into the simple eigenvalues $\lambda_\varepsilon^{(i)}$ of the boundary value problem
\begin{gather*} (\Delta+\lambda_{\varepsilon})\varphi_{\varepsilon}=0 \quad \text{for } x\in\Omega, \\ \frac{\partial\varphi_{\varepsilon}}{\partial n}=0 \quad \text{on } \Gamma_0\setminus\overline{\omega}_{\varepsilon}, \quad \varphi_{\varepsilon}=0 \quad \text{on } \omega_{\varepsilon}, \end{gather*}
which possess distinct rates of convergence to $\lambda_0$. Here $\omega_{\varepsilon}$, is an open connected part of $\Gamma_0$ with length of order $\varepsilon$, $0<\varepsilon\ll 1$, and $n$ is the outward normal to $\Omega$.
Received: 24.09.1991
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 3, Pages 433–450
DOI: https://doi.org/10.1007/BF00971218
Bibliographic databases:
UDC: 517.956
Language: Russian
Citation: R. R. Gadyl'shin, “Splitting a multiple eigenvalue in the boundary value problem for a membrane clamped on a small part of the boundary”, Sibirsk. Mat. Zh., 34:3 (1993), 43–61; Siberian Math. J., 34:3 (1993), 433–450
Citation in format AMSBIB
\Bibitem{Gad93}
\by R.~R.~Gadyl'shin
\paper Splitting a multiple eigenvalue in the boundary value problem for a~membrane clamped on a~small part of the boundary
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 3
\pages 43--61
\mathnet{http://mi.mathnet.ru/smj1651}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1241167}
\zmath{https://zbmath.org/?q=an:0827.35082}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 3
\pages 433--450
\crossref{https://doi.org/10.1007/BF00971218}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993LR86400004}
Linking options:
  • https://www.mathnet.ru/eng/smj1651
  • https://www.mathnet.ru/eng/smj/v34/i3/p43
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025