Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 4, Pages 127–141 (Mi smj1636)  

This article is cited in 18 scientific papers (total in 18 papers)

Generalized solutions to a free boundary problem of motion of a non-newtonian fluid

P. I. Plotnikov
Abstract: We consider a problem of the motion of fluids that occupy open sets $\omega_i(t)\subset\mathbf{R}^2$ separated by a compact manifold $\Gamma(t)=\mathbf{R}^2\setminus(\omega_0(t)\cup\omega_1(t))$. The problem is to determine the manifold $\Gamma(t)$ and the solenoidal velocity field $v(x,t)$ so as to satisfy the equations
\begin{gather*} v_t+v\nabla v-\operatorname{div}(b_i(|D(v)|)D(v))+\nabla p=0, \\ [v]=0, \quad [P]\cdot n+kn=0, \\ v(x,0)=v_0(x), \quad \Gamma(0)=\Gamma_0. \end{gather*}
Here $k$ is the curvature of the interface, and $P$ and $D$ are the tensors of tensions and deformation velocities. The functions $b_i$ meet the conditions $c^{-1}s^{p-2}\le b_i(s)\le cs^{p-2}$ and $(sb_i)'\ge0$, $p>2$. Some definition of a generalized solution is given. We prove that the problem has at least one such solution.
Received: 15.04.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 4, Pages 704–716
DOI: https://doi.org/10.1007/BF00975173
Bibliographic databases:
UDC: 517.9, 532.5
Language: Russian
Citation: P. I. Plotnikov, “Generalized solutions to a free boundary problem of motion of a non-newtonian fluid”, Sibirsk. Mat. Zh., 34:4 (1993), 127–141; Siberian Math. J., 34:4 (1993), 704–716
Citation in format AMSBIB
\Bibitem{Plo93}
\by P.~I.~Plotnikov
\paper Generalized solutions to a~free boundary problem of motion of a non-newtonian fluid
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 4
\pages 127--141
\mathnet{http://mi.mathnet.ru/smj1636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1248797}
\zmath{https://zbmath.org/?q=an:0814.76007}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 4
\pages 704--716
\crossref{https://doi.org/10.1007/BF00975173}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MA84100016}
Linking options:
  • https://www.mathnet.ru/eng/smj1636
  • https://www.mathnet.ru/eng/smj/v34/i4/p127
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:463
    Full-text PDF :148
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024