Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2007, Volume 48, Number 1, Pages 192–204 (Mi smj16)  

This article is cited in 8 scientific papers (total in 8 papers)

On lattices embeddable into subsemigroup lattices. III: Nilpotent semigroups

M. V. Semenova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (250 kB) Citations (8)
References:
Abstract: We prove that the class of the lattices embeddable into subsemigroup lattices of $n$-nilpotent semigroups is a finitely based variety for all $n<\omega$. Repnitskii showed that each lattice embeds into the subsemigroup lattice of a commutative nilsemigroup of index 2. In this proof he used a result of Bredikhin and Schein which states that each lattice embeds into the suborder lattices of an appropriate order. We give a direct proof of the Repnitskii result not appealing to the Bredikhin–Schein theorem, so answering a question in a book by Shevrin and Ovsyannikov.
Keywords: lattice, semigroup, sublattice, variety.
Received: 18.10.2005
English version:
Siberian Mathematical Journal, 2007, Volume 48, Issue 1, Pages 156–164
DOI: https://doi.org/10.1007/s11202-007-0016-2
Bibliographic databases:
UDC: 512.56
Language: Russian
Citation: M. V. Semenova, “On lattices embeddable into subsemigroup lattices. III: Nilpotent semigroups”, Sibirsk. Mat. Zh., 48:1 (2007), 192–204; Siberian Math. J., 48:1 (2007), 156–164
Citation in format AMSBIB
\Bibitem{Sem07}
\by M.~V.~Semenova
\paper On lattices embeddable into subsemigroup lattices. III: Nilpotent semigroups
\jour Sibirsk. Mat. Zh.
\yr 2007
\vol 48
\issue 1
\pages 192--204
\mathnet{http://mi.mathnet.ru/smj16}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2304888}
\zmath{https://zbmath.org/?q=an:1154.20047}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 1
\pages 156--164
\crossref{https://doi.org/10.1007/s11202-007-0016-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244424100016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846614079}
Linking options:
  • https://www.mathnet.ru/eng/smj16
  • https://www.mathnet.ru/eng/smj/v48/i1/p192
    Cycle of papers
    This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :91
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024