Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 5, Pages 188–201 (Mi smj1499)  

This article is cited in 2 scientific papers (total in 2 papers)

On lie algebras with monomial basis

A. I. Sozutov
Abstract: A basis $D$ of an algebra $L$ over a field $\Phi$ is called monomial if $ab=\alpha_{ab}c$ for all $a,b,c\in D$ and $\alpha_{ab}\in\Phi$. Such a basis is said to be homogeneous if $\alpha_{ab}\in\{-1,0,1\}$. A subalgebra $S$ in $L$ generated by elements of $D$ is called a $D$-subalgebra and the minimal number of generators for $S$ that belong to $D$ is called,the rank of $S$. We study Lie algebras with a monomial basis $D$ such that every pair of its elements generates a subalgebra in $L$ which is abelian or 3-dimensional simple.
All connected algebras of rank 3 are listed: they are an algebra of type $D_2$ over an arbitrary field, a 7-dimensional simple algebra of characteristic 3, and two families of 7-dimensional simple algebras of characteristic 2 (Theorem 2.1).
In the case when $L$ includes no 7-dimensional simple $D$-subalgebras, we prove that $D$ is embeddable as a set of 3-transpositions into some group $G$ and, moreover, the multiplication in $L$ is determined by the group multiplication to within structure constants. This, in particular, shows that the algebra $L$ is locally finite.
In the case when $G$ is a symmetric group $\Sigma_{\Omega}$, simple formulas for the multiplication in $L$ are found. Furthermore, if $|\Omega|=m<\infty$ then $L$ is an algebra of type $D_n$ for $m=2n$, and a classical algebra of type $B_n$ for $m=2n+1$.
Received: 11.03.1992
Revised: 10.02.1993
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 5, Pages 959–971
DOI: https://doi.org/10.1007/BF00971409
Bibliographic databases:
UDC: 512.42/81:519.44/45
Language: Russian
Citation: A. I. Sozutov, “On lie algebras with monomial basis”, Sibirsk. Mat. Zh., 34:5 (1993), 188–201; Siberian Math. J., 34:5 (1993), 959–971
Citation in format AMSBIB
\Bibitem{Soz93}
\by A.~I.~Sozutov
\paper On lie algebras with monomial basis
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 5
\pages 188--201
\mathnet{http://mi.mathnet.ru/smj1499}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1255470}
\zmath{https://zbmath.org/?q=an:0815.17005}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 5
\pages 959--971
\crossref{https://doi.org/10.1007/BF00971409}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MG83400015}
Linking options:
  • https://www.mathnet.ru/eng/smj1499
  • https://www.mathnet.ru/eng/smj/v34/i5/p188
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024