Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 5, Pages 163–180 (Mi smj1497)  

This article is cited in 8 scientific papers (total in 8 papers)

Ultrafilters and topologies on groups

I. V. Protasov
Abstract: The set of all vdtrafilters on a topological group $\overline{\tau}$ $(G,\tau)$ is considered which converge to the identity. The set $\overline{\tau}$ with the \breve{C}ech-Stone topology and the Glazer operation of multiplication of ultranlteres turns out to be a compact space and besides a semigroup with the operation of multiphication continuous in the second argument. The semigroup $\overline{\tau}$ is used as a tool for studying the topological group-$(G,\tau)$. Basing on some description of minimal right ideals of the semigroup $\overline{\tau}$, we prove the next
Theorem. {\it If a neighborhood $W$ of the identity of a topological group is subjected to partitioning into finitely many subsets $W=A_1\cup\dots\cup A_k$, then there are a natural $i$ and a finite set $K\subseteq G$ such that $A_i^{-1}A_iK$ is a neighborhood of the identity.}
It is preven that commutativity of the Semigroup $\overline{\tau}$ implies total desconnectedness of the group $(G,\tau)$. For every group topology $\tau$, we construct the finest topology among those totally bounded with respect to $\tau$ (a generalization of the constructions by Weil and Bohr). New cardinal invariants for groups are introduced (namely, ultrarank and index of noncompactness) as well as some methods for their calculating.
Received: 03.06.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 5, Pages 938–952
DOI: https://doi.org/10.1007/BF00971407
Bibliographic databases:
UDC: 512.546
Language: Russian
Citation: I. V. Protasov, “Ultrafilters and topologies on groups”, Sibirsk. Mat. Zh., 34:5 (1993), 163–180; Siberian Math. J., 34:5 (1993), 938–952
Citation in format AMSBIB
\Bibitem{Pro93}
\by I.~V.~Protasov
\paper Ultrafilters and topologies on groups
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 5
\pages 163--180
\mathnet{http://mi.mathnet.ru/smj1497}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1255468}
\zmath{https://zbmath.org/?q=an:0828.22002}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 5
\pages 938--952
\crossref{https://doi.org/10.1007/BF00971407}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MG83400013}
Linking options:
  • https://www.mathnet.ru/eng/smj1497
  • https://www.mathnet.ru/eng/smj/v34/i5/p163
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:532
    Full-text PDF :327
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024